语言: 中文
小部件:
- 文本: "[CLS]国 色 天 香 , 姹 紫 嫣 红 , 碧 水 青 云 欣 共 赏 -"
中文对联GPT2模型
模型描述
该模型由UER-py预训练,相关论文见此处。此外,该模型也可通过腾讯预训练框架进行预训练,该框架继承UER-py以支持参数超十亿的模型,并扩展为多模态预训练框架,相关论文见此处。
该模型用于生成中文对联。您可以从UER-py模型库页面、GPT2-Chinese GitHub页面下载模型,或通过HuggingFace链接gpt2-chinese-couplet获取。
由于在pipelines.py中使用了skip_special_tokens参数,[SEP]、[UNK]等特殊标记会被删除,托管推理API(右侧)的输出结果可能无法正常显示。
使用方法
您可以直接使用文本生成管道调用该模型:
当skip_special_tokens参数为True时:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True)
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}]
当skip_special_tokens参数为False时:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True)
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 我 酒 不 辞 [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP]'}]
训练数据
训练数据包含70万副中文对联,由couplet-clean-dataset收集整理。
训练过程
模型在腾讯云上通过UER-py进行预训练。我们以64的序列长度预训练了25,000步。
python3 preprocess.py --corpus_path corpora/couplet.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path couplet_dataset.pt --processes_num 16 \
--seq_length 64 --data_processor lm
python3 pretrain.py --dataset_path couplet_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/config.json \
--output_model_path models/couplet_gpt2_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 25000 --save_checkpoint_steps 5000 --report_steps 1000 \
--learning_rate 5e-4 --batch_size 64
最后,我们将预训练模型转换为Huggingface格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/couplet_gpt2_model.bin-25000 \
--output_model_path pytorch_model.bin \
--layers_num 12
参考文献与引用信息
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}