base_model: openai/clip-vit-large-patch14
language: zh
tags:
- 视觉
- 零样本分类
- 植物病害
- 农业
- 微调模型
datasets:
- 自定义数据集
model-index:
- name: clip-vit-large-patch14-finetuned-disease
results: []
clip-vit-large-patch14植物病害微调模型
本模型是基于openai/clip-vit-large-patch14在自定义植物病害描述数据集上微调的版本。专为植物叶片图像分类及生成描述叶片健康状况或病害的文本而设计。
模型描述
clip-vit-large-patch14-finetuned-disease
模型经过专门优化的数据集训练,用于识别影响植物叶片的各种病害。该模型采用CLIP架构,将叶片图像映射至描述性文本,辅助植物病害的诊断与分类。
标签与描述
模型可识别以下植物病害及健康状态:
{
0: "苹果疮痂病叶片",
1: "苹果黑腐病叶片",
2: "苹果锈病叶片",
3: "健康苹果叶片",
4: "玉米灰斑病叶片",
5: "玉米普通锈病叶片",
6: "玉米北方叶枯病叶片",
7: "健康玉米叶片",
8: "榴莲藻斑病叶片",
9: "榴莲叶枯病叶片",
10: "榴莲叶斑病叶片",
11: "健康榴莲叶片",
12: "葡萄黑腐病叶片",
13: "葡萄黑麻疹病叶片",
14: "葡萄叶枯病叶片",
15: "健康葡萄叶片",
16: "油棕榈褐斑病叶片",
17: "健康油棕榈叶片",
18: "油棕榈白蚧病叶片",
19: "柑橘黄龙病叶片",
20: "甜椒细菌性斑点病叶片",
21: "健康甜椒叶片",
22: "马铃薯早疫病叶片",
23: "马铃薯晚疫病叶片",
24: "健康马铃薯叶片",
25: "水稻白叶枯病叶片",
26: "水稻稻瘟病叶片",
27: "水稻褐斑病叶片",
28: "水稻东格鲁病叶片",
29: "健康大豆叶片",
30: "草莓叶焦病叶片",
31: "健康草莓叶片",
32: "番茄细菌性斑点病叶片",
33: "番茄早疫病叶片",
34: "番茄晚疫病叶片",
35: "番茄叶霉病叶片",
36: "番茄斑枯病叶片",
37: "番茄二斑叶螨危害叶片",
38: "番茄靶斑病叶片",
39: "番茄黄化曲叶病毒病叶片",
40: "番茄花叶病毒病叶片",
41: "健康番茄叶片"
}
使用方式
您可通过clip-vit-large-patch14-finetuned-disease
模型对植物叶片图像进行分类,并生成描述其健康状况或病害的文本。以下是使用Hugging Face Transformers库调用该模型的Python示例:
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import requests
model = CLIPModel.from_pretrained("Keetawan/clip-vit-large-patch14-plant-disease-finetuned")
processor = CLIPProcessor.from_pretrained("Keetawan/clip-vit-large-patch14-plant-disease-finetuned")
image_url = "https://example.com/图片路径.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)
inputs = processor(text=["苹果疮痂病叶片", "健康番茄叶片", ...], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
predicted_label = probs.argmax().item()
labels = [
"苹果疮痂病叶片",
"苹果黑腐病叶片",
...
"健康番茄叶片"
]
print(f"预测标签: {labels[predicted_label]}")
引用规范
若在研究或应用中使用本模型,请按以下格式引用:
@misc{keetawan2024plantdisease,
author = {Keetawan Limaroon},
title = {clip-vit-large-patch14植物病害微调模型:用于植物病害分类与描述的微调模型},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/Keetawan/clip-vit-large-patch14-plant-disease-finetuned},
}