标签:
模型索引:
- 名称: flan-t5-base-opus-en-id-id-en
结果: []
许可证: apache-2.0
语言:
- 英语
- 印尼语
- 多语言
指标:
- sacrebleu
小部件:
- 文本: "将印尼语翻译成英语: Hai, Bagaimana kabarmu?"
示例标题: "tl_id2en_v1"
- 文本: "翻译成英语: Hai, Bagaimana kabarmu?"
示例标题: "tl_id2en_v2"
- 文本: "hey apa yang kamu lakukan terhadapnya ? 用英语怎么说"
示例标题: "tl_id2en_v3"
- 文本: "将英语翻译成印尼语: Hello, How are you today?"
示例标题: "tl_en2id_v1"
- 文本: "翻译成印尼语: Hello, How are you today?"
示例标题: "tl_en2id_v2"
flan-t5-base-opus-en-id-id-en
该模型旨在成为仅支持印尼语和英语的多模态翻译器。
模型详情
模型描述
- 模型类型: 语言模型
- 支持语言 (NLP): 英语、印尼语
- 许可证: Apache 2.0
使用方法
使用PyTorch模型
在CPU上运行模型
点击展开
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
input_text = "将英语翻译成印尼语: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
在GPU上运行模型
点击展开
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto")
input_text = "将英语翻译成印尼语: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
使用不同精度在GPU上运行模型
FP16精度
点击展开
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-ene")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", torch_dtype=torch.float16)
input_text = "将英语翻译成印尼语: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
INT8精度
点击展开
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", load_in_8bit=True)
input_text = "将英语翻译成印尼语: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
训练结果
训练损失 |
周期 |
步数 |
验证损失 |
分数 |
计数 |
总计 |
精确度 |
Bp |
系统长度 |
参考长度 |
生成长度 |
1.6959 |
0.55 |
4000 |
1.5776 |
30.6542 |
[4414, 2368, 1345, 733] |
[7417, 6417, 5426, 4519] |
[59.511932047997846, 36.9019791179679, 24.78805750092149, 16.220402743969906] |
1.0 |
7417 |
7354 |
10.77 |
1.4378 |
1.11 |
8000 |
1.4527 |
32.3772 |
[4526, 2538, 1483, 834] |
[7567, 6567, 5576, 4666] |
[59.81234306858729, 38.647784376427595, 26.596126255380202, 17.873981997428203] |
1.0 |
7567 |
7354 |
10.885 |
1.3904 |
1.66 |
12000 |
1.3961 |
33.8978 |
[4558, 2559, 1494, 836] |
[7286, 6286, 5295, 4383] |
[62.55833104584134, 40.70951320394528, 28.21529745042493, 19.073693817020306] |
0.9907 |
7286 |
7354 |
10.569 |
1.3035 |
2.21 |
16000 |
1.3758 |
34.9471 |
[4609, 2628, 1546, 880] |
[7297, 6297, 5306, 4392] |
[63.16294367548308, 41.73415912339209, 29.136826234451565, 20.036429872495447] |
0.9922 |
7297 |
7354 |
10.591 |
1.2994 |
2.77 |
20000 |
1.3685 |
35.0259 |
[4617, 2627, 1550, 883] |
[7288, 6288, 5297, 4382] |
[63.350713501646545, 41.777989821882954, 29.261846328110252, 20.150616157005935] |
0.991 |
7288 |
7354 |
10.556 |
框架版本
- Transformers 4.29.2
- PyTorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3