标签:
- 模糊匹配
- 模糊搜索
- 实体解析
- 记录链接
- 结构化数据搜索
一个基于字符级标记训练的孪生BERT架构,用于实现基于嵌入的模糊匹配。
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型变得非常简单:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer, util
word1 = "fuzzformer"
word1 = " ".join([char for char in word1])
word2 = "fizzformer"
word2 = " ".join([char for char in word2])
words = [word1, word2]
model = SentenceTransformer('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
fuzzy_embeddings = model.encode(words)
print("模糊匹配分数:")
print(util.cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
使用方法(HuggingFace Transformers)
import torch
from transformers import AutoTokenizer, AutoModel
from torch import Tensor, device
def cos_sim(a: Tensor, b: Tensor):
"""
从sentence transformers库借用的函数
计算所有i和j的余弦相似度cos_sim(a[i], b[j])。
:return: 矩阵,其中res[i][j] = cos_sim(a[i], b[j])
"""
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a_norm, b_norm.transpose(0, 1))
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
word1 = "fuzzformer"
word1 = " ".join([char for char in word1])
word2 = "fizzformer"
word2 = " ".join([char for char in word2])
words = [word1, word2]
tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
model = AutoModel.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("模糊匹配分数:")
print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
致谢
非常感谢Sentence Transformers,他们的实现极大地加速了Fuzzformer的开发。
引用
如需在您的工作中引用FuzzTransformer,请使用以下bibtex格式的引用:
@misc{shahrukhkhan2021fuzzTransformer,
author = {Shahrukh Khan},
title = {FuzzTransformer: 一种基于字符级嵌入的孪生变换器,用于模糊字符串匹配。},
year = 2021,
publisher = {即将发布},
doi = {即将发布},
url = {即将发布}
}