模型说明
这是专为SUPERB关键词检测任务移植的S3PRL Wav2Vec2模型版本。基础模型采用16kHz采样率的wav2vec2-base,使用时需确保输入语音同为16kHz采样。详见论文SUPERB:语音处理通用性能基准。
任务与数据集
关键词检测(KS)通过将语音分类到预定义词表来识别注册关键词。该任务通常在设备端运行,要求兼顾准确率、模型体积和推理速度。SUPERB采用广泛使用的Speech Commands v1.0数据集,包含10个关键词类别、静音类及未知类(用于误报检测)。原始模型训练方法详见S3PRL下游任务说明。
使用示例
通过音频分类管道调用:
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-ks")
labels = classifier(dataset[0]["file"], top_k=5)
或直接调用模型:
import torch
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
from torchaudio.sox_effects import apply_effects_file
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
def map_to_array(example):
speech, _ = apply_effects_file(example["file"], effects)
example["speech"] = speech.squeeze(0).numpy()
return example
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
评估结果
准确率指标对比:
|
s3prl |
transformers |
测试集 |
0.9623 |
0.9643 |
文献引用
@article{yang2021superb,
title={SUPERB: 语音处理通用性能基准},
author={杨书文等},
journal={arXiv预印本},
year={2021}
}