library_name: transformers
language:
- de
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
pipeline_tag: automatic-speech-recognition
German-RAG-WHISPER-LARGE-v3-TURBO-HESSIAN-AI
该模型基于精心筛选的13小时数据集进行微调。
评估指标 - 词错误率
测试数据集 |
openai-whisper-large-v3-turbo |
German-RAG-WHISPER-LARGE-v3-TURBO |
primeline-whisper-large-v3-turbo-german |
Tuda-De |
8.195 |
6.360 |
6.441 |
common_voice_19_0 |
3.839 |
3.249 |
3.217 |
multilingual librispeech |
3.202 |
2.071 |
2.067 |
综合表现 |
3.641 |
2.633 |
2.630 |
评估数据与代码详见此处
训练数据
本模型训练数据包含德语会话及英语商务短语混合内容,经过严格筛选和处理以优化识别性能。因数据可能涉及语音克隆风险,暂不公开数据集。所收集数据仅限用于训练语音转文本模型。
使用方式
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "avemio/German-RAG-WHISPER-LARGE-v3-TURBO"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
框架版本
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
German-RAG AI团队
Marcel Rosiak
Soumya Paul
Siavash Mollaebrahim
Zain ul Haq