语言:
- myv
许可证: apache-2.0
标签:
- 自动语音识别
- mozilla-foundation/common_voice_8_0
- 训练生成
- myv
- 鲁棒语音事件
- 对话模型
- hf-asr排行榜
数据集:
- mozilla-foundation/common_voice_8_0
模型索引:
- 名称: wav2vec2-large-xls-r-300m-myv-v1
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice 8
类型: mozilla-foundation/common_voice_8_0
参数: myv
指标:
- 名称: 测试WER
类型: wer
值: 0.599548532731377
- 名称: 测试CER
类型: cer
值: 0.12953851902597
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: 鲁棒语音事件 - 开发数据
类型: speech-recognition-community-v2/dev_data
参数: myv
指标:
- 名称: 测试WER
类型: wer
值: NA
- 名称: 测试CER
类型: cer
值: NA
wav2vec2-large-xls-r-300m-myv-v1
该模型是基于facebook/wav2vec2-xls-r-300m在MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV数据集上微调的版本。
在评估集上取得了以下结果:
评估命令
- 在mozilla-foundation/common_voice_8_0的测试集上评估
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs
- 在speech-recognition-community-v2/dev_data上评估
未在speech-recognition-community-v2/dev_data中找到埃尔兹亚语!
训练超参数
训练过程中使用了以下超参数:
- 学习率: 0.000222
- 训练批次大小: 16
- 评估批次大小: 8
- 随机种子: 42
- 梯度累积步数: 2
- 总训练批次大小: 32
- 优化器: Adam,参数为betas=(0.9,0.999)和epsilon=1e-08
- 学习率调度器类型: 线性
- 学习率预热步数: 1000
- 训练轮数: 150
- 混合精度训练: Native AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
WER |
19.453 |
1.92 |
50 |
16.4001 |
1.0 |
9.6875 |
3.85 |
100 |
5.4468 |
1.0 |
4.9988 |
5.77 |
150 |
4.3507 |
1.0 |
4.1148 |
7.69 |
200 |
3.6753 |
1.0 |
3.4922 |
9.62 |
250 |
3.3103 |
1.0 |
3.2443 |
11.54 |
300 |
3.1741 |
1.0 |
3.164 |
13.46 |
350 |
3.1346 |
1.0 |
3.0954 |
15.38 |
400 |
3.0428 |
1.0 |
3.0076 |
17.31 |
450 |
2.9137 |
1.0 |
2.6883 |
19.23 |
500 |
2.1476 |
0.9978 |
1.5124 |
21.15 |
550 |
0.8955 |
0.8225 |
0.8711 |
23.08 |
600 |
0.6948 |
0.7591 |
0.6695 |
25.0 |
650 |
0.6683 |
0.7636 |
0.5606 |
26.92 |
700 |
0.6821 |
0.7435 |
0.503 |
28.85 |
750 |
0.7220 |
0.7516 |
0.4528 |
30.77 |
800 |
0.6638 |
0.7324 |
0.4219 |
32.69 |
850 |
0.7120 |
0.7435 |
0.4109 |
34.62 |
900 |
0.7122 |
0.7511 |
0.3887 |
36.54 |
950 |
0.7179 |
0.7199 |
0.3895 |
38.46 |
1000 |
0.7322 |
0.7525 |
0.391 |
40.38 |
1050 |
0.6850 |
0.7364 |
0.3537 |
42.31 |
1100 |
0.7571 |
0.7279 |
0.3267 |
44.23 |
1150 |
0.7575 |
0.7257 |
0.3195 |
46.15 |
1200 |
0.7580 |
0.6998 |
0.2891 |
48.08 |
1250 |
0.7452 |
0.7101 |
0.294 |
50.0 |
1300 |
0.7316 |
0.6945 |
0.2854 |
51.92 |
1350 |
0.7241 |
0.6757 |
0.2801 |
53.85 |
1400 |
0.7532 |
0.6887 |
0.2502 |
55.77 |
1450 |
0.7587 |
0.6811 |
0.2427 |
57.69 |
1500 |
0.7231 |
0.6851 |
0.2311 |
59.62 |
1550 |
0.7288 |
0.6632 |
0.2176 |
61.54 |
1600 |
0.7711 |
0.6664 |
0.2117 |
63.46 |
1650 |
0.7914 |
0.6940 |
0.2114 |
65.38 |
1700 |
0.8065 |
0.6918 |
0.1913 |
67.31 |
1750 |
0.8372 |
0.6945 |
0.1897 |
69.23 |
1800 |
0.8051 |
0.6869 |
0.1865 |
71.15 |
1850 |
0.8076 |
0.6740 |
0.1844 |
73.08 |
1900 |
0.7935 |
0.6708 |
0.1757 |
75.0 |
1950 |
0.8015 |
0.6610 |
0.1636 |
76.92 |
2000 |
0.7614 |
0.6414 |
0.1637 |
78.85 |
2050 |
0.8123 |
0.6592 |
0.1599 |
80.77 |
2100 |
0.7907 |
0.6566 |
0.1498 |
82.69 |
2150 |
0.8641 |
0.6757 |
0.1545 |
84.62 |
2200 |
0.7438 |
0.6682 |
0.1433 |
86.54 |
2250 |
0.8014 |
0.6624 |
0.1427 |
88.46 |
2300 |
0.7758 |
0.6646 |
0.1423 |
90.38 |
2350 |
0.7741 |
0.6423 |
0.1298 |
92.31 |
2400 |
0.7938 |
0.6414 |
0.1111 |
94.23 |
2450 |
0.7976 |
0.6467 |
0.1243 |
96.15 |
2500 |
0.7916 |
0.6481 |
0.1215 |
98.08 |
2550 |
0.7594 |
0.6392 |
0.113 |
100.0 |
2600 |
0.8236 |
0.6392 |
0.1077 |
101.92 |
2650 |
0.7959 |
0.6347 |
0.0988 |
103.85 |
2700 |
0.8189 |
0.6392 |
0.0953 |
105.77 |
2750 |
0.8157 |
0.6414 |
0.0889 |
107.69 |
2800 |
0.7946 |
0.6369 |
0.0929 |
109.62 |
2850 |
0.8255 |
0.6360 |
0.0822 |
111.54 |
2900 |
0.8320 |
0.6334 |
0.086 |
113.46 |
2950 |
0.8539 |
0.6490 |
0.0825 |
115.38 |
3000 |
0.8438 |
0.6418 |
0.0727 |
117.31 |
3050 |
0.8568 |
0.6481 |
0.0717 |
119.23 |
3100 |
0.8447 |
0.6512 |
0.0815 |
121.15 |
3150 |
0.8470 |
0.6445 |
0.0689 |
123.08 |
3200 |
0.8264 |
0.6249 |
0.0726 |
125.0 |
3250 |
0.7981 |
0.6169 |
0.0648 |
126.92 |
3300 |
0.8237 |
0.6200 |
0.0632 |
128.85 |
3350 |
0.8416 |
0.6249 |
0.06 |
130.77 |
3400 |
0.8276 |
0.6173 |
0.0616 |
132.69 |
3450 |
0.8429 |
0.6209 |
0.0614 |
134.62 |
3500 |
0.8485 |
0.6271 |
0.0539 |
136.54 |
3550 |
0.8598 |
0.6218 |
0.0555 |
138.46 |
3600 |
0.8557 |
0.6169 |
0.0604 |
140.38 |
3650 |
0.8436 |
0.6186 |
0.0556 |
142.31 |
3700 |
0.8428 |
0.6178 |
0.051 |
144.23 |
3750 |
0.8440 |
0.6142 |
0.0526 |
146.15 |
3800 |
0.8566 |
0.6142 |
0.052 |
148.08 |
3850 |
0.8544 |
0.6178 |
0.0519 |
150.0 |
3900 |
0.8537 |
0.6160 |
框架版本
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0