🚀 Wav2vec2 Large 100k Voxpopuli 基于Common Voice和M - AILABS的俄语微调模型
本项目是将 Wav2vec2 Large 100k Voxpopuli 模型使用Common Voice 7.0和M - AILABS数据集进行俄语微调后的成果,可用于俄语的自动语音识别任务。
🚀 快速开始
安装依赖
本项目使用Python和相关的深度学习库,你可以通过以下方式安装所需的库:
pip install transformers torchaudio datasets jiwer
加载模型和分词器
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
💻 使用示例
基础用法
以下代码展示了如何使用该模型进行语音识别:
from transformers import AutoTokenizer, Wav2Vec2ForCTC
import torch
import torchaudio
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
audio_file = "your_audio_file.wav"
waveform, sample_rate = torchaudio.load(audio_file)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
input_values = tokenizer(waveform.squeeze().numpy(), return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.decode(predicted_ids[0])
print("识别结果:", transcription)
高级用法
使用Common Voice数据集进行测试
from datasets import load_dataset
import torchaudio
import re
from jiwer import wer
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = dataset.map(map_to_array)
def map_to_pred(batch):
input_values = tokenizer(batch["speech"], return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = tokenizer.decode(predicted_ids[0])
return batch
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
Wav2vec2 Large 100k Voxpopuli 俄语微调模型 |
训练数据 |
Common Voice 7.0和M - AILABS |
评估指标 |
字错率(WER) |
结果查看
如需查看详细的实验结果,请参考 论文。
📄 许可证
本项目采用Apache - 2.0许可证。