许可证: apache-2.0
标签:
- 训练生成
- 自动语音识别
- NbAiLab/NPSC
- 鲁棒语音事件
- false
- nb-NO
- hf-asr-leaderboard
数据集:
- NbAiLab/NPSC
语言:
- nb-NO
模型索引:
- 名称: XLSR-300M-bokmaal
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: NPSC
类型: NbAiLab/NPSC
参数: 16K_mp3_bokmaal
指标:
- 名称: "测试(博克马尔语) WER"
类型: wer
值: 0.07699635320946434
- 名称: "测试(博克马尔语) CER"
类型: cer
值: 0.0284288464829
XLSR-300M-bokmaal
此模型是基于facebook/wav2vec2-xls-r-300m在NBAILAB/NPSC - 16K_MP3_BOKMAAL数据集上微调得到的版本。
在评估集上取得了以下结果:
- 损失: 0.1635
- 词错误率(WER): 0.1005
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率: 0.0001
- 训练批次大小: 16
- 评估批次大小: 16
- 随机种子: 42
- 梯度累积步数: 2
- 总训练批次大小: 32
- 优化器: Adam,参数为betas=(0.9,0.999)和epsilon=1e-08
- 学习率调度器类型: 线性
- 学习率预热步数: 2000
- 训练轮数: 15.0
- 混合精度训练: Native AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
词错误率 |
3.0307 |
0.32 |
500 |
3.0026 |
1.0 |
2.7865 |
0.64 |
1000 |
2.4849 |
0.9926 |
0.7522 |
0.95 |
1500 |
0.4567 |
0.3594 |
0.5703 |
1.27 |
2000 |
0.3440 |
0.2586 |
0.4762 |
1.59 |
2500 |
0.2925 |
0.2178 |
0.4585 |
1.91 |
3000 |
0.2442 |
0.1981 |
0.4013 |
2.23 |
3500 |
0.2495 |
0.1818 |
0.449 |
2.54 |
4000 |
0.2152 |
0.1808 |
0.355 |
2.86 |
4500 |
0.2179 |
0.1670 |
0.3142 |
3.18 |
5000 |
0.1953 |
0.1542 |
0.3242 |
3.5 |
5500 |
0.2103 |
0.1526 |
0.3016 |
3.82 |
6000 |
0.1911 |
0.1477 |
0.2713 |
4.13 |
6500 |
0.1836 |
0.1422 |
0.2807 |
4.45 |
7000 |
0.1924 |
0.1447 |
0.2929 |
4.77 |
7500 |
0.1848 |
0.1402 |
0.2595 |
5.09 |
8000 |
0.1783 |
0.1330 |
0.2289 |
5.41 |
8500 |
0.1901 |
0.1313 |
0.2567 |
5.72 |
9000 |
0.1784 |
0.1298 |
0.2401 |
6.04 |
9500 |
0.1956 |
0.1298 |
0.2098 |
6.36 |
10000 |
0.1748 |
0.1277 |
0.2246 |
6.68 |
10500 |
0.1777 |
0.1254 |
0.2197 |
7.0 |
11000 |
0.1703 |
0.1222 |
0.2122 |
7.32 |
11500 |
0.1917 |
0.1221 |
0.2746 |
7.63 |
12000 |
0.1769 |
0.1215 |
0.2148 |
7.95 |
12500 |
0.1736 |
0.1193 |
0.1915 |
8.27 |
13000 |
0.1814 |
0.1161 |
0.2462 |
8.59 |
13500 |
0.1748 |
0.1166 |
0.1872 |
8.91 |
14000 |
0.1769 |
0.1133 |
0.1886 |
9.22 |
14500 |
0.1852 |
0.1143 |
0.1789 |
9.54 |
15000 |
0.1696 |
0.1126 |
0.1692 |
9.86 |
15500 |
0.1817 |
0.1122 |
0.1765 |
10.18 |
16000 |
0.1769 |
0.1093 |
0.1699 |
10.5 |
16500 |
0.1604 |
0.1084 |
0.1591 |
10.81 |
17000 |
0.1777 |
0.1080 |
0.1499 |
11.13 |
17500 |
0.1645 |
0.1074 |
0.163 |
11.45 |
18000 |
0.1704 |
0.1065 |
0.1597 |
11.77 |
18500 |
0.1576 |
0.1064 |
0.1484 |
12.09 |
19000 |
0.1637 |
0.1041 |
0.1464 |
12.4 |
19500 |
0.1631 |
0.1047 |
0.156 |
12.72 |
20000 |
0.1686 |
0.1029 |
0.1625 |
13.04 |
20500 |
0.1648 |
0.1023 |
0.1395 |
13.36 |
21000 |
0.1688 |
0.1027 |
0.1387 |
13.68 |
21500 |
0.1670 |
0.1013 |
0.1434 |
13.99 |
22000 |
0.1677 |
0.1017 |
0.1442 |
14.31 |
22500 |
0.1688 |
0.1008 |
0.1439 |
14.63 |
23000 |
0.1647 |
0.1004 |
0.137 |
14.95 |
23500 |
0.1636 |
0.1006 |
框架版本
- Transformers 4.17.0.dev0
- PyTorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0