许可证: cc0-1.0
标签:
- 自动语音识别
- NbAiLab/NPSC
- 训练生成
- 强健语音事件
数据集:
基础模型: KBLab/wav2vec2-large-voxrex
模型索引:
- 名称: wav2vec2-large-voxrex-npsc
结果: []
wav2vec2-large-voxrex-npsc
本模型是基于KBLab/wav2vec2-large-voxrex在NBAILAB/NPSC - 16K_MP3数据集上微调的版本。在评估集上取得如下结果:
模型描述
需补充更多信息
使用场景与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用的超参数如下:
- 学习率: 0.0001
- 训练批大小: 16
- 评估批大小: 16
- 随机种子: 42
- 梯度累积步数: 2
- 总训练批大小: 32
- 优化器: Adam (β1=0.9, β2=0.999, ε=1e-08)
- 学习率调度器类型: 线性
- 学习率预热步数: 2000
- 训练轮次: 15.0
- 混合精度训练: 原生AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
词错误率 |
2.9728 |
0.32 |
500 |
2.9449 |
1.0 |
2.5099 |
0.64 |
1000 |
1.8492 |
0.9910 |
0.7872 |
0.97 |
1500 |
0.4467 |
0.3774 |
0.5993 |
1.29 |
2000 |
0.3181 |
0.2819 |
0.5134 |
1.61 |
2500 |
0.2638 |
0.2401 |
0.4544 |
1.93 |
3000 |
0.2287 |
0.2091 |
0.4085 |
2.26 |
3500 |
0.2153 |
0.1918 |
0.3921 |
2.58 |
4000 |
0.2004 |
0.1804 |
0.4613 |
2.9 |
4500 |
0.1905 |
0.1732 |
0.3402 |
3.22 |
5000 |
0.1778 |
0.1659 |
0.3258 |
3.55 |
5500 |
0.1732 |
0.1571 |
0.3044 |
3.87 |
6000 |
0.1677 |
0.1497 |
0.2914 |
4.19 |
6500 |
0.1597 |
0.1420 |
0.278 |
4.51 |
7000 |
0.1574 |
0.1386 |
0.2858 |
4.84 |
7500 |
0.1552 |
0.1300 |
0.2585 |
5.16 |
8000 |
0.1523 |
0.1276 |
0.2827 |
5.48 |
8500 |
0.1448 |
0.1265 |
0.3365 |
5.8 |
9000 |
0.1411 |
0.1232 |
0.2488 |
6.13 |
9500 |
0.1456 |
0.1195 |
0.2406 |
6.45 |
10000 |
0.1414 |
0.1194 |
0.2488 |
6.77 |
10500 |
0.1393 |
0.1173 |
0.3084 |
7.09 |
11000 |
0.1379 |
0.1164 |
0.2365 |
7.41 |
11500 |
0.1387 |
0.1165 |
0.2217 |
7.74 |
12000 |
0.1381 |
0.1132 |
0.2381 |
8.06 |
12500 |
0.1360 |
0.1126 |
0.2329 |
8.38 |
13000 |
0.1357 |
0.1124 |
0.2103 |
8.7 |
13500 |
0.1335 |
0.1087 |
0.2366 |
9.03 |
14000 |
0.1388 |
0.1105 |
0.2289 |
9.35 |
14500 |
0.1383 |
0.1098 |
0.2486 |
9.67 |
15000 |
0.1386 |
0.1087 |
0.2772 |
9.99 |
15500 |
0.1598 |
0.1093 |
0.2728 |
10.32 |
16000 |
0.1814 |
0.1110 |
0.3437 |
10.64 |
16500 |
0.2505 |
0.1124 |
0.431 |
10.96 |
17000 |
0.2828 |
0.1143 |
0.3929 |
11.28 |
17500 |
0.2977 |
0.1149 |
0.4396 |
11.61 |
18000 |
0.3198 |
0.1170 |
0.59 |
11.93 |
18500 |
0.4158 |
0.1315 |
0.7813 |
12.25 |
19000 |
0.6123 |
0.2208 |
0.9345 |
12.57 |
19500 |
0.6815 |
0.2885 |
0.998 |
12.89 |
20000 |
0.7587 |
0.1991 |
1.0493 |
13.22 |
20500 |
0.7583 |
0.1996 |
1.438 |
13.54 |
21000 |
nan |
1.0 |
0.0 |
13.86 |
21500 |
nan |
1.0 |
0.0 |
14.18 |
22000 |
nan |
1.0 |
0.0 |
14.51 |
22500 |
nan |
1.0 |
0.0 |
14.83 |
23000 |
nan |
1.0 |
框架版本
- Transformers 4.17.0.dev0
- PyTorch 1.10.2+cu113
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0