license: apache-2.0
tags:
- 自动语音识别
- NbAiLab/NPSC
- 训练生成
model-index:
- name: ''
results: []
该模型是基于facebook/wav2vec2-xls-r-300m在NBAILAB/NPSC - 16K_MP3数据集上微调的版本。在评估集上取得了如下结果:
- 损失值:0.1957
- 词错误率(Wer):0.1697
模型描述
需补充更多信息
预期用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用的超参数如下:
- 学习率:7.5e-05
- 训练批大小:16
- 评估批大小:16
- 随机种子:42
- 梯度累积步数:4
- 总训练批大小:64
- 优化器:Adam(参数β=(0.9,0.999),ε=1e-08)
- 学习率调度器类型:线性
- 学习率预热步数:2000
- 训练轮次:20.0
- 混合精度训练:原生AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
词错误率 |
4.4527 |
0.28 |
250 |
4.0144 |
1.0 |
3.1828 |
0.56 |
500 |
3.1369 |
1.0 |
2.9927 |
0.85 |
750 |
3.0183 |
1.0 |
2.9591 |
1.13 |
1000 |
2.9991 |
1.0 |
2.8989 |
1.41 |
1250 |
2.9000 |
1.0000 |
2.4286 |
1.69 |
1500 |
1.7688 |
0.9550 |
1.6765 |
1.98 |
1750 |
0.6842 |
0.4855 |
1.4521 |
2.26 |
2000 |
0.5096 |
0.3736 |
1.3589 |
2.54 |
2250 |
0.4479 |
0.3335 |
1.3136 |
2.82 |
2500 |
0.4056 |
0.3123 |
1.2856 |
3.11 |
2750 |
0.3870 |
0.2987 |
1.2283 |
3.39 |
3000 |
0.3646 |
0.2828 |
1.2053 |
3.67 |
3250 |
0.3499 |
0.2748 |
1.2087 |
3.95 |
3500 |
0.3345 |
0.2603 |
1.2002 |
4.24 |
3750 |
0.3320 |
0.2523 |
1.1383 |
4.52 |
4000 |
0.3117 |
0.2439 |
1.1364 |
4.8 |
4250 |
0.3198 |
0.2383 |
1.158 |
5.08 |
4500 |
0.3071 |
0.2342 |
1.108 |
5.37 |
4750 |
0.3011 |
0.2314 |
1.1025 |
5.65 |
5000 |
0.2875 |
0.2289 |
1.0697 |
5.93 |
5250 |
0.2926 |
0.2256 |
1.0904 |
6.21 |
5500 |
0.2695 |
0.2245 |
1.0802 |
6.5 |
5750 |
0.2602 |
0.2189 |
1.0882 |
6.78 |
6000 |
0.2603 |
0.2168 |
1.0881 |
7.06 |
6250 |
0.2540 |
0.2293 |
1.0378 |
7.34 |
6500 |
0.2614 |
0.2193 |
1.0397 |
7.63 |
6750 |
0.2707 |
0.2104 |
1.0296 |
7.91 |
7000 |
0.2483 |
0.2119 |
1.0249 |
8.19 |
7250 |
0.2483 |
0.2047 |
1.013 |
8.47 |
7500 |
0.2487 |
0.2042 |
1.0064 |
8.76 |
7750 |
0.2456 |
0.2016 |
1.0668 |
9.04 |
8000 |
0.2397 |
0.1995 |
1.0129 |
9.32 |
8250 |
0.2374 |
0.1994 |
1.0164 |
9.6 |
8500 |
0.2206 |
0.1992 |
0.975 |
9.89 |
8750 |
0.2247 |
0.1973 |
0.9849 |
10.17 |
9000 |
0.2325 |
0.1953 |
0.9826 |
10.45 |
9250 |
0.2301 |
0.1934 |
0.9835 |
10.73 |
9500 |
0.2192 |
0.1942 |
0.9676 |
11.02 |
9750 |
0.2266 |
0.1913 |
0.9627 |
11.3 |
10000 |
0.2193 |
0.1921 |
0.976 |
11.58 |
10250 |
0.2309 |
0.1882 |
0.969 |
11.86 |
10500 |
0.2268 |
0.1886 |
0.9611 |
12.15 |
10750 |
0.2322 |
0.1863 |
0.9397 |
12.43 |
11000 |
0.2197 |
0.1844 |
0.9601 |
12.71 |
11250 |
0.2211 |
0.1871 |
0.9718 |
12.99 |
11500 |
0.2079 |
0.1898 |
0.9347 |
13.28 |
11750 |
0.2054 |
0.1843 |
0.9377 |
13.56 |
12000 |
0.2031 |
0.1842 |
0.934 |
13.84 |
12250 |
0.2059 |
0.1806 |
0.9295 |
14.12 |
12500 |
0.2122 |
0.1861 |
0.935 |
14.41 |
12750 |
0.2072 |
0.1787 |
0.9021 |
14.69 |
13000 |
0.2105 |
0.1781 |
0.9193 |
14.97 |
13250 |
0.2035 |
0.1786 |
0.9214 |
15.25 |
13500 |
0.2035 |
0.1766 |
0.9048 |
15.54 |
13750 |
0.1964 |
0.1758 |
0.9006 |
15.82 |
14000 |
0.1984 |
0.1757 |
0.9027 |
16.1 |
14250 |
0.2022 |
0.1743 |
0.9083 |
16.38 |
14500 |
0.1969 |
0.1744 |
0.9761 |
16.67 |
14750 |
0.1963 |
0.1728 |
0.9311 |
16.95 |
15000 |
0.1960 |
0.1737 |
0.886 |
17.23 |
15250 |
0.1929 |
0.1726 |
0.8969 |
17.51 |
15500 |
0.1928 |
0.1734 |
0.9084 |
17.8 |
15750 |
0.1937 |
0.1713 |
0.8795 |
18.08 |
16000 |
0.1978 |
0.1709 |
0.8883 |
18.36 |
16250 |
0.1956 |
0.1703 |
0.8901 |
18.64 |
16500 |
0.1933 |
0.1705 |
0.8922 |
18.93 |
16750 |
0.1962 |
0.1711 |
0.8765 |
19.21 |
17000 |
0.1962 |
0.1711 |
0.8992 |
19.49 |
17250 |
0.1965 |
0.1703 |
0.8778 |
19.77 |
17500 |
0.1957 |
0.1699 |
框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.18.1
- Tokenizers 0.11.0