语言: 雅库特语(sah)
数据集:
- 通用语音(common_voice)
评估指标:
- 词错误率(wer)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: Anton Lozhkov训练的雅库特语XLSR Wav2Vec2大模型53版
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 通用语音雅库特语
类型: common_voice
参数: sah
评估指标:
- 名称: 测试词错误率
类型: wer
数值: 32.23
Wav2Vec2大模型XLSR-53雅库特语版
基于facebook/wav2vec2-large-xlsr-53模型,使用通用语音数据集对雅库特语进行微调。使用本模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),示例如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sah", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可通过以下方式在通用语音的雅库特语测试数据上评估模型:
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sah/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/sah/clips/"
def clean_sentence(sent):
sent = sent.lower()
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("词错误率: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
测试结果: 32.23%
训练过程
训练使用了通用语音数据集的train
和validation
子集。