opus-mt-tc-big-en-fr
用于从英语(en)翻译至法语(fr)的神经机器翻译模型。
该模型隶属于OPUS-MT项目,该项目致力于让神经机器翻译模型在全球范围内广泛覆盖多种语言并易于获取。所有模型最初均采用纯C++编写的高效NMT实现框架——Marian NMT进行训练,后通过huggingface的transformers库转换为pyTorch格式。训练数据源自OPUS,训练流程遵循OPUS-MT-train的标准化流程。
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
模型信息
使用示例
简易调用代码:
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"The Portuguese teacher is very demanding.",
"When was your last hearing test?"
]
model_name = "pytorch-models/opus-mt-tc-big-en-fr"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
也可通过transformers流水线调用:
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-fr")
print(pipe("The Portuguese teacher is very demanding."))
基准测试
语言对 |
测试集 |
chr-F |
BLEU |
句子数 |
词数 |
eng-fra |
tatoeba-test-v2021-08-07 |
0.69621 |
53.2 |
12681 |
106378 |
eng-fra |
flores101-devtest |
0.72494 |
52.2 |
1012 |
28343 |
eng-fra |
multi30k_test_2016_flickr |
0.72361 |
52.4 |
1000 |
13505 |
eng-fra |
multi30k_test_2017_flickr |
0.72826 |
52.8 |
1000 |
12118 |
eng-fra |
multi30k_test_2017_mscoco |
0.73547 |
54.7 |
461 |
5484 |
eng-fra |
multi30k_test_2018_flickr |
0.66723 |
43.7 |
1071 |
15867 |
eng-fra |
newsdiscussdev2015 |
0.60471 |
33.4 |
1500 |
27940 |
eng-fra |
newsdiscusstest2015 |
0.64915 |
40.3 |
1500 |
27975 |
eng-fra |
newssyscomb2009 |
0.58903 |
30.7 |
502 |
12331 |
eng-fra |
news-test2008 |
0.55516 |
27.6 |
2051 |
52685 |
eng-fra |
newstest2009 |
0.57907 |
30.0 |
2525 |
69263 |
eng-fra |
newstest2010 |
0.60156 |
33.5 |
2489 |
66022 |
eng-fra |
newstest2011 |
0.61632 |
35.0 |
3003 |
80626 |
eng-fra |
newstest2012 |
0.59736 |
32.8 |
3003 |
78011 |
eng-fra |
newstest2013 |
0.59700 |
34.6 |
3000 |
70037 |
eng-fra |
newstest2014 |
0.66686 |
41.9 |
3003 |
77306 |
eng-fra |
tico19-test |
0.63022 |
40.6 |
2100 |
64661 |
致谢
本工作获得以下支持:
模型转换信息
- transformers版本:4.16.2
- OPUS-MT git哈希值:3405783
- 移植时间:2022年4月13日星期三 EEST 17:07:05
- 移植机器:LM0-400-22516.local