pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
language: ko
ko-sroberta-multitask
这是一个sentence-transformers模型:它能将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型变得非常简单:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["你好吗?", "这是一个用于韩语句子嵌入的BERT模型。"]
model = SentenceTransformer('jhgan/ko-sroberta-multitask')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
如果没有安装sentence-transformers,可以这样使用模型:首先将输入传递给transformer模型,然后需要在上下文化的词嵌入之上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['这是一个示例句子', '每个句子都被转换']
tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-multitask')
model = AutoModel.from_pretrained('jhgan/ko-sroberta-multitask')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
评估结果
使用KorSTS和KorNLI训练数据集进行多任务学习后,在KorSTS评估数据集上的评估结果如下:
- 余弦皮尔逊:84.77
- 余弦斯皮尔曼:85.60
- 欧几里得皮尔逊:83.71
- 欧几里德斯皮尔曼:84.40
- 曼哈顿皮尔逊:83.70
- 曼哈顿斯皮尔曼:84.38
- 点积皮尔逊:82.42
- 点积斯皮尔曼:82.33
训练
模型训练参数如下:
数据加载器:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度8885,参数:
{'batch_size': 64}
损失函数:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度719,参数:
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()方法的参数:
{
"epochs": 5,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 360,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
- Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv
preprint arXiv:2004.03289
- Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019)
- Reimers, Nils and Iryna Gurevych. “Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation.” EMNLP (2020).