language: ja
license: cc-by-sa-4.0
tags:
- sentence-transformers
- sentence-bert
- feature-extraction
- sentence-similarity
这是一个日语版Sentence-BERT模型。
此为日语专用Sentence-BERT模型(版本2)。
相较于版本1,本版本采用更优的损失函数MultipleNegativesRankingLoss进行训练优化。
在私有数据集测试中,本版本比版本1的准确率提升了1.5至2个百分点。
模型基于cl-tohoku/bert-base-japanese-whole-word-masking预训练模型构建。
运行推理需安装fugashi和ipadic(pip install fugashi ipadic)。
旧版本说明
https://qiita.com/sonoisa/items/1df94d0a98cd4f209051
只需将模型名称替换为"sonoisa/sentence-bert-base-ja-mean-tokens-v2",即可使用本模型进行推理。
使用方法
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2"
model = SentenceBertJapanese(MODEL_NAME)
sentences = ["暴走的AI", "失控的人工智能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("句子嵌入向量:", sentence_embeddings)