🚀 tags - allnli - GroNLP - bert - base - dutch - cased
这是一个句子转换器模型,它能将句子和段落映射到一个768维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型可通过两种方式使用,分别是使用sentence - transformers
库和直接使用HuggingFace Transformers
库。下面为你详细介绍。
📦 安装指南
若要使用sentence - transformers
库,你需要先安装它:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence - Transformers)
使用sentence - transformers
库时,你可以这样使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
若不使用sentence - transformers
库,你可以按以下步骤使用模型:首先,将输入传递给Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
model = AutoModel.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动化评估,请参考句子嵌入基准测试:https://seb.sbert.net
训练信息
该模型使用以下参数进行训练:
数据加载器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度为4687,参数如下:
{'batch_size': 128}
损失函数
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()方法的参数
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 3000,
"warmup_steps": 300.0,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
BibTeX引用
@inproceedings{kosar-etal-2023-advancing,
title = "Advancing Topical Text Classification: A Novel Distance-Based Method with Contextual Embeddings",
author = "Kosar, Andriy and
De Pauw, Guy and
Daelemans, Walter",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.64",
pages = "586--597",
}
其他信息
属性 |
详情 |
管道标签 |
句子相似度 |
标签 |
句子转换器、特征提取、句子相似度、转换器 |
语言 |
荷兰语 |
小部件示例
源句子:“In Spanje en Portugal zijn dit weekend door branden duizenden hectares bos verwoest, meldt persbureau DPA. In het westen van Portugal was volgens de autoriteiten vanochtend 6200 hectare afgebrand.”
候选句子:
- "kunst, cultuur, entertainment en media"
- "conflict, oorlog en vrede"
- "misdaad, recht en gerechtigheid"
- "rampen, ongevallen en noodgevallen"
- "economie, handel en financiën"
- "onderwijs"
- "milieu"
- "gezondheid"
- "menselijke interesse"
- "arbeid"
- "levensstijl en vrije tijd"
- "politiek"
- "religie en geloof"
- "wetenschap en technologie"
- "maatschappij"
- "sport"
- "weer"
示例标题:“IPTC媒体主题”