Sentence Flaubert Base
基于FlauBERT的法语句子嵌入模型,用于计算句子相似度
下载量 1,846
发布时间 : 10/25/2023
模型简介
该模型是基于预训练的FlauBERT模型微调的法语句子嵌入模型,专门用于计算句子之间的相似度。它在多个法语文本相似度基准测试中表现出色。
模型特点
高性能法语句子嵌入
在多个法语文本相似度基准测试中取得最先进性能
基于FlauBERT预训练模型
利用FlauBERT-base-uncased作为基础模型进行微调
Augmented SBERT方法
采用配对采样策略增强模型性能
模型能力
法语句子嵌入
句子相似度计算
文本语义匹配
使用案例
文本相似度
语义搜索
用于构建法语语义搜索引擎
提高搜索结果的相关性
问答系统
用于匹配问题和答案的语义相似度
提升问答系统的准确率
自然语言处理
文本聚类
用于将语义相似的文本分组
提高聚类质量
🚀 预训练法语句子嵌入模型
预训练的句子嵌入模型代表了法语句子嵌入领域的先进水平。该模型通过特定的微调方式,在法语句子嵌入任务中展现出卓越的性能,为相关自然语言处理应用提供了强大的支持。
🚀 快速开始
预训练的句子嵌入模型是法语句子嵌入领域的先进技术。该模型使用预训练的 flaubert/flaubert_base_uncased 和 Siamese BERT-Networks with 'sentences-transformers' 进行微调,并结合 Augmented SBERT 在数据集 stsb 上进行训练,同时采用了配对采样策略,借助两个模型 CrossEncoder-camembert-large 和 dangvantuan/sentence-camembert-large 完成训练。
✨ 主要特性
- 先进技术融合:结合了预训练模型、Siamese BERT-Networks、Augmented SBERT 等多种先进技术。
- 多模型协同:通过两个不同的模型进行配对采样策略,提升模型性能。
- 多数据集验证:在多个不同的基准数据集上进行评估,确保模型的泛化能力。
📦 安装指南
文档未提及安装步骤,故跳过此章节。
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
sentences = ["Un avion est en train de décoller.",
"Un homme joue d'une grande flûte.",
"Un homme étale du fromage râpé sur une pizza.",
"Une personne jette un chat au plafond.",
"Une personne est en train de plier un morceau de papier.",
]
embeddings = model.encode(sentences)
📚 详细文档
评估
该模型可以在 stsb 的法语测试数据上进行如下评估:
from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from datasets import load_dataset
def convert_dataset(dataset):
dataset_samples=[]
for df in dataset:
score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[df['sentence1'],
df['sentence2']], label=score)
dataset_samples.append(inp_example)
return dataset_samples
# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
# Convert the dataset for evaluation
# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")
# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")
测试结果
性能通过在 sts-benchmark 上的 Pearson 和 Spearman 相关性进行衡量:
开发集
模型 | Pearson 相关系数 | Spearman 相关系数 | 参数数量 |
---|---|---|---|
Lajavaness/sentence-flaubert-base | 87.14 | 87.10 | 137M |
Lajavaness/sentence-camembert-base | 86.88 | 86.73 | 110M |
dangvantuan/sentence-camembert-base | 86.73 | 86.54 | 110M |
inokufu/flaubert-base-uncased-xnli-sts | 85.85 | 85.71 | 137M |
distiluse-base-multilingual-cased | 79.22 | 79.16 | 135M |
测试集
在许多不同的基准数据集上评估 Pearson 和 Spearman 相关性:
Pearson 分数
模型 | STS-B | STS12-fr | STS13-fr | STS14-fr | STS15-fr | STS16-fr | SICK-fr | 参数数量 |
---|---|---|---|---|---|---|---|---|
Lajavaness/sentence-flaubert-base | 85.5 | 86.64 | 87.24 | 85.68 | 88.00 | 75.78 | 82.84 | 137M |
Lajavaness/sentence-camembert-base | 83.46 | 84.49 | 84.61 | 83.94 | 86.94 | 75.20 | 82.86 | 110M |
inokufu/flaubert-base-uncased-xnli-sts | 82.82 | 84.79 | 85.76 | 82.81 | 85.38 | 74.05 | 82.23 | 137M |
dangvantuan/sentence-camembert-base | 82.36 | 82.06 | 84.08 | 81.51 | 85.54 | 73.97 | 80.91 | 110M |
sentence-transformers/distiluse-base-multilingual-cased-v2 | 78.63 | 72.51 | 67.25 | 70.12 | 79.93 | 66.67 | 77.76 | 135M |
hugorosen/flaubert_base_uncased-xnli-sts | 78.38 | 79.00 | 77.61 | 76.56 | 79.03 | 71.22 | 80.58 | 137M |
antoinelouis/biencoder-camembert-base-mmarcoFR | 76.97 | 71.43 | 73.50 | 70.56 | 78.44 | 71.23 | 77.62 | 110M |
Spearman 分数
模型 | STS-B | STS12-fr | STS13-fr | STS14-fr | STS15-fr | STS16-fr | SICK-fr | 参数数量 |
---|---|---|---|---|---|---|---|---|
Lajavaness/sentence-flaubert-base | 85.67 | 80.00 | 86.91 | 84.59 | 88.10 | 77.84 | 77.55 | 137M |
inokufu/flaubert-base-uncased-xnli-sts | 83.07 | 77.34 | 85.88 | 80.96 | 85.70 | 76.43 | 77.00 | 137M |
Lajavaness/sentence-camembert-base | 82.92 | 77.71 | 84.19 | 81.83 | 87.04 | 76.81 | 76.36 | 110M |
dangvantuan/sentence-camembert-base | 81.64 | 75.45 | 83.86 | 78.63 | 85.66 | 75.36 | 74.18 | 110M |
sentence-transformers/distiluse-base-multilingual-cased-v2 | 77.49 | 69.80 | 68.85 | 68.17 | 80.27 | 70.04 | 72.49 | 135M |
hugorosen/flaubert_base_uncased-xnli-sts | 76.93 | 68.96 | 77.62 | 71.87 | 79.33 | 72.86 | 73.91 | 137M |
antoinelouis/biencoder-camembert-base-mmarcoFR | 75.55 | 66.89 | 73.90 | 67.14 | 78.78 | 72.64 | 72.03 | 110M |
📄 许可证
本模型采用 Apache-2.0 许可证。
📚 引用
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{martin2020camembert,
title={CamemBERT: a Tasty French Language Mode},
author={Martin, Louis and Muller, Benjamin and Suárez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, Éric Villemonte and Seddah, Djamé and Sagot, Benoît},
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
@article{thakur2020augmented,
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
journal={arXiv e-prints},
pages={arXiv--2010},
year={2020}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文