🚀 robbert-2022-dutch-sentence-transformers - Onnx
本项目提供了一个用于荷兰语句子相似度计算的Onnx模型,它基于robbert-2022-dutch-sentence-transformers模型转换而来,可用于聚类、语义搜索等任务。
🚀 快速开始
模型信息
数据集
该模型在以下荷兰语翻译数据集上进行训练:
- NetherlandsForensicInstitute/AllNLI-translated-nl
- NetherlandsForensicInstitute/altlex-translated-nl
- NetherlandsForensicInstitute/coco-captions-translated-nl
- NetherlandsForensicInstitute/flickr30k-captions-translated-nl
- NetherlandsForensicInstitute/msmarco-translated-nl
- NetherlandsForensicInstitute/quora-duplicates-translated-nl
- NetherlandsForensicInstitute/sentence-compression-translated-nl
- NetherlandsForensicInstitute/simplewiki-translated-nl
- NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl
- NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl
模型描述
这个Onnx模型是robbert-2022-dutch-sentence-transformers的转换版本,使用了 这里 找到的transformers.js脚本进行转换。
示例展示
- 示例标题:荷兰语
- 源句子:Deze week ga ik naar de kapper
- 对比句子:
- Ik ga binnenkort mijn haren laten knippen
- Morgen wil ik uitslapen
- Gisteren ging ik naar de bioscoop
✨ 主要特性
这是一个 sentence-transformers 模型,它可以将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。该模型基于 KU Leuven的RobBERT模型,并在 Paraphrase数据集 上进行了微调,该数据集已被机器翻译成荷兰语。
📦 安装指南
若要使用此模型,你需要安装 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用 sentence-transformers
库的简单示例:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
不使用 sentence-transformers
库,手动处理输入并进行池化操作的示例:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技术细节
训练参数
模型训练时使用的参数如下:
数据加载器
MultiDatasetDataLoader.MultiDatasetDataLoader
,长度为414262,参数如下:
{'batch_size': 1}
损失函数
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
训练方法参数
{
"epochs": 1,
"evaluation_steps": 50000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📚 详细文档
引用与作者
如果你使用了该模型,请参考相关文档进行引用。关于更多信息,可在模型创建者的页面 Netherlands Forensic Institute 中查找。