J
Jina Embeddings V2 Base En Q5 K M GGUF
由 djuna 开发
Jina Embeddings V2 Base 是一个高效的英语文本嵌入模型,专注于句子相似度和特征提取任务。
下载量 85
发布时间 : 7/28/2024
模型介绍
内容详情
替代品
模型简介
该模型基于Apache 2.0许可证发布,主要用于生成高质量的文本嵌入,适用于各种自然语言处理任务。
模型特点
高效文本嵌入
能够生成高质量的文本嵌入,适用于各种下游任务。
多任务支持
在多种评估数据集上表现良好,包括分类、聚类和检索任务。
开源许可
采用Apache 2.0许可证,允许商业使用和修改。
模型能力
文本特征提取
句子相似度计算
文本分类
信息检索
文本聚类
使用案例
电子商务
产品评论分类
对亚马逊产品评论进行分类
在MTEB AmazonPolarityClassification上达到88.54%准确率
金融
银行客服问题分类
对银行客户服务问题进行自动分类
在MTEB Banking77Classification上达到84.01%准确率
学术研究
论文聚类
对arXiv和biorxiv论文进行主题聚类
在MTEB ArxivClusteringP2P上达到45.39 v_measure分数
base_model: jinaai/jina-embeddings-v2-base-en
datasets:
- allenai/c4
language: en
license: apache-2.0
tags: - sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- llama-cpp
- gguf-my-repo
inference: false
model-index: - name: jina-embedding-b-en-v2
results:- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:- type: accuracy
value: 74.73134328358209 - type: ap
value: 37.765427081831035 - type: f1
value: 68.79367444339518
- type: accuracy
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:- type: accuracy
value: 88.544275 - type: ap
value: 84.61328675662887 - type: f1
value: 88.51879035862375
- type: accuracy
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:- type: accuracy
value: 45.263999999999996 - type: f1
value: 43.778759656699435
- type: accuracy
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:- type: map_at_1
value: 21.693 - type: map_at_10
value: 35.487 - type: map_at_100
value: 36.862 - type: map_at_1000
value: 36.872 - type: map_at_3
value: 30.049999999999997 - type: map_at_5
value: 32.966 - type: mrr_at_1
value: 21.977 - type: mrr_at_10
value: 35.565999999999995 - type: mrr_at_100
value: 36.948 - type: mrr_at_1000
value: 36.958 - type: mrr_at_3
value: 30.121 - type: mrr_at_5
value: 33.051 - type: ndcg_at_1
value: 21.693 - type: ndcg_at_10
value: 44.181 - type: ndcg_at_100
value: 49.982 - type: ndcg_at_1000
value: 50.233000000000004 - type: ndcg_at_3
value: 32.830999999999996 - type: ndcg_at_5
value: 38.080000000000005 - type: precision_at_1
value: 21.693 - type: precision_at_10
value: 7.248 - type: precision_at_100
value: 0.9769999999999999 - type: precision_at_1000
value: 0.1 - type: precision_at_3
value: 13.632 - type: precision_at_5
value: 10.725 - type: recall_at_1
value: 21.693 - type: recall_at_10
value: 72.475 - type: recall_at_100
value: 97.653 - type: recall_at_1000
value: 99.57300000000001 - type: recall_at_3
value: 40.896 - type: recall_at_5
value: 53.627
- type: map_at_1
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:- type: v_measure
value: 45.39242428696777
- type: v_measure
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:- type: v_measure
value: 36.675626784714
- type: v_measure
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:- type: map
value: 62.247725694904034 - type: mrr
value: 74.91359978894604
- type: map
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:- type: cos_sim_pearson
value: 82.68003802970496 - type: cos_sim_spearman
value: 81.23438110096286 - type: euclidean_pearson
value: 81.87462986142582 - type: euclidean_spearman
value: 81.23438110096286 - type: manhattan_pearson
value: 81.61162566600755 - type: manhattan_spearman
value: 81.11329400456184
- type: cos_sim_pearson
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:- type: accuracy
value: 84.01298701298701 - type: f1
value: 83.31690714969382
- type: accuracy
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:- type: v_measure
value: 37.050108150972086
- type: v_measure
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:- type: v_measure
value: 30.15731442819715
- type: v_measure
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:- type: map_at_1
value: 31.391999999999996 - type: map_at_10
value: 42.597 - type: map_at_100
value: 44.07 - type: map_at_1000
value: 44.198 - type: map_at_3
value: 38.957 - type: map_at_5
value: 40.961 - type: mrr_at_1
value: 37.196 - type: mrr_at_10
value: 48.152 - type: mrr_at_100
value: 48.928 - type: mrr_at_1000
value: 48.964999999999996 - type: mrr_at_3
value: 45.446 - type: mrr_at_5
value: 47.205999999999996 - type: ndcg_at_1
value: 37.196 - type: ndcg_at_10
value: 49.089 - type: ndcg_at_100
value: 54.471000000000004 - type: ndcg_at_1000
value: 56.385 - type: ndcg_at_3
value: 43.699 - type: ndcg_at_5
value: 46.22 - type: precision_at_1
value: 37.196 - type: precision_at_10
value: 9.313 - type: precision_at_100
value: 1.478 - type: precision_at_1000
value: 0.198 - type: precision_at_3
value: 20.839 - type: precision_at_5
value: 14.936 - type: recall_at_1
value: 31.391999999999996 - type: recall_at_10
value: 61.876 - type: recall_at_100
value: 84.214 - type: recall_at_1000
value: 95.985 - type: recall_at_3
value: 46.6 - type: recall_at_5
value: 53.588 - type: map_at_1
value: 29.083 - type: map_at_10
value: 38.812999999999995 - type: map_at_100
value: 40.053 - type: map_at_1000
value: 40.188 - type: map_at_3
value: 36.111 - type: map_at_5
value: 37.519000000000005 - type: mrr_at_1
value: 36.497 - type: mrr_at_10
value: 44.85 - type: mrr_at_100
value: 45.546 - type: mrr_at_1000
value: 45.593 - type: mrr_at_3
value: 42.686 - type: mrr_at_5
value: 43.909 - type: ndcg_at_1
value: 36.497 - type: ndcg_at_10
value: 44.443 - type: ndcg_at_100
value: 48.979 - type: ndcg_at_1000
value: 51.154999999999994 - type: ndcg_at_3
value: 40.660000000000004 - type: ndcg_at_5
value: 42.193000000000005 - type: precision_at_1
value: 36.497 - type: precision_at_10
value: 8.433 - type: precision_at_100
value: 1.369 - type: precision_at_1000
value: 0.185 - type: precision_at_3
value: 19.894000000000002 - type: precision_at_5
value: 13.873 - type: recall_at_1
value: 29.083 - type: recall_at_10
value: 54.313 - type: recall_at_100
value: 73.792 - type: recall_at_1000
value: 87.629 - type: recall_at_3
value: 42.257 - type: recall_at_5
value: 47.066 - type: map_at_1
value: 38.556000000000004 - type: map_at_10
value: 50.698 - type: map_at_100
value: 51.705 - type: map_at_1000
value: 51.768 - type: map_at_3
value: 47.848 - type: map_at_5
value: 49.358000000000004 - type: mrr_at_1
value: 43.95 - type: mrr_at_10
value: 54.191 - type: mrr_at_100
value: 54.852999999999994 - type: mrr_at_1000
value: 54.885 - type: mrr_at_3
value: 51.954 - type: mrr_at_5
value: 53.13 - type: ndcg_at_1
value: 43.95 - type: ndcg_at_10
value: 56.516 - type: ndcg_at_100
value: 60.477000000000004 - type: ndcg_at_1000
value: 61.746 - type: ndcg_at_3
value: 51.601 - type: ndcg_at_5
value: 53.795 - type: precision_at_1
value: 43.95 - type: precision_at_10
value: 9.009 - type: precision_at_100
value: 1.189 - type: precision_at_1000
value: 0.135 - type: precision_at_3
value: 22.989 - type: precision_at_5
value: 15.473 - type: recall_at_1
value: 38.556000000000004 - type: recall_at_10
value: 70.159 - type: recall_at_100
value: 87.132 - type: recall_at_1000
value: 96.16 - type: recall_at_3
value: 56.906 - type: recall_at_5
value: 62.332 - type: map_at_1
value: 24.238 - type: map_at_10
value: 32.5 - type: map_at_100
value: 33.637 - type: map_at_1000
value: 33.719 - type: map_at_3
value: 30.026999999999997 - type: map_at_5
value: 31.555 - type: mrr_at_1
value: 26.328000000000003 - type: mrr_at_10
value: 34.44 - type: mrr_at_100
value: 35.455999999999996 - type: mrr_at_1000
value: 35.521 - type: mrr_at_3
value: 32.034 - type: mrr_at_5
value: 33.565 - type: ndcg_at_1
value: 26.328000000000003 - type: ndcg_at_10
value: 37.202 - type: ndcg_at_100
value: 42.728 - type: ndcg_at_1000
value: 44.792 - type: ndcg_at_3
value: 32.368 - type: ndcg_at_5
value: 35.008 - type: precision_at_1
value: 26.328000000000003 - type: precision_at_10
value: 5.7059999999999995 - type: precision_at_100
value: 0.8880000000000001 - type: precision_at_1000
value: 0.11100000000000002 - type: precision_at_3
value: 13.672 - type: precision_at_5
value: 9.74 - type: recall_at_1
value: 24.238 - type: recall_at_10
value: 49.829 - type: recall_at_100
value: 75.21 - type: recall_at_1000
value: 90.521 - type: recall_at_3
value: 36.867 - type: recall_at_5
value: 43.241 - type: map_at_1
value: 15.378 - type: map_at_10
value: 22.817999999999998 - type: map_at_100
value: 23.977999999999998 - type: map_at_1000
value: 24.108 - type: map_at_3
value: 20.719 - type: map_at_5
value: 21.889 - type: mrr_at_1
value: 19.03 - type: mrr_at_10
value: 27.022000000000002 - type: mrr_at_100
value: 28.011999999999997 - type: mrr_at_1000
value: 28.096 - type: mrr_at_3
value: 24.855 - type: mrr_at_5
value: 26.029999999999998 - type: ndcg_at_1
value: 19.03 - type: ndcg_at_10
value: 27.526 - type: ndcg_at_100
value: 33.040000000000006 - type: ndcg_at_1000
value: 36.187000000000005 - type: ndcg_at_3
value: 23.497 - type: ndcg_at_5
value: 25.334 - type: precision_at_1
value: 19.03 - type: precision_at_10
value: 4.963 - type: precision_at_100
value: 0.893 - type: precision_at_1000
value: 0.13 - type: precision_at_3
value: 11.360000000000001 - type: precision_at_5
value: 8.134 - type: recall_at_1
value: 15.378 - type: recall_at_10
value: 38.061 - type: recall_at_100
value: 61.754 - type: recall_at_1000
value: 84.259 - type: recall_at_3
value: 26.788 - type: recall_at_5
value: 31.326999999999998 - type: map_at_1
value: 27.511999999999997 - type: map_at_10
value: 37.429 - type: map_at_100
value: 38.818000000000005 - type: map_at_1000
value: 38.924 - type: map_at_3
value: 34.625 - type: map_at_5
value: 36.064 - type: mrr_at_1
value: 33.300999999999995 - type: mrr_at_10
value: 43.036 - type: mrr_at_100
value: 43.894 - type: mrr_at_1000
value: 43.936 - type: mrr_at_3
value: 40.825 - type: mrr_at_5
value: 42.028 - type: ndcg_at_1
value: 33.300999999999995 - type: ndcg_at_10
value: 43.229 - type: ndcg_at_100
value: 48.992000000000004 - type: ndcg_at_1000
value: 51.02100000000001 - type: ndcg_at_3
value: 38.794000000000004 - type: ndcg_at_5
value: 40.65 - type: precision_at_1
value: 33.300999999999995 - type: precision_at_10
value: 7.777000000000001 - type: precision_at_100
value: 1.269 - type: precision_at_1000
value: 0.163 - type: precision_at_3
value: 18.351 - type: precision_at_5
value: 12.762 - type: recall_at_1
value: 27.511999999999997 - type: recall_at_10
value: 54.788000000000004 - type: recall_at_100
value: 79.105 - type: recall_at_1000
value: 92.49199999999999 - type: recall_at_3
value: 41.924 - type: recall_at_5
value: 47.026 - type: map_at_1
value: 24.117 - type: map_at_10
value: 33.32 - type: map_at_100
value: 34.677 - type: map_at_1000
value: 34.78 - type: map_at_3
value: 30.233999999999998 - type: map_at_5
value: 31.668000000000003 - type: mrr_at_1
value: 29.566 - type: mrr_at_10
value: 38.244 - type: mrr_at_100
value: 39.245000000000005 - type: mrr_at_1000
value: 39.296 - type: mrr_at_3
value: 35.864000000000004 - type: mrr_at_5
value: 36.919999999999995 - type: ndcg_at_1
value: 29.566 - type: ndcg_at_10
value: 39.127 - type: ndcg_at_100
value: 44.989000000000004 - type: ndcg_at_1000
value: 47.189 - type: ndcg_at_3
value: 34.039 - type: ndcg_at_5
value: 35.744 - type: precision_at_1
value: 29.566 - type: precision_at_10
value: 7.385999999999999 - type: precision_at_100
value: 1.204 - type: precision_at_1000
value: 0.158 - type: precision_at_3
value: 16.286 - type: precision_at_5
value: 11.484 - type: recall_at_1
value: 24.117 - type: recall_at_10
value: 51.559999999999995 - type: recall_at_100
value: 77.104 - type: recall_at_1000
value: 91.79899999999999 - type: recall_at_3
value: 36.82 - type: recall_at_5
value: 41.453 - type: map_at_1
value: 25.17625 - type: map_at_10
value: 34.063916666666664 - type: map_at_100
value: 35.255500000000005 - type: map_at_1000
value: 35.37275 - type: map_at_3
value: 31.351666666666667 - type: map_at_5
value: 32.80608333333333 - type: mrr_at_1
value: 29.59783333333333 - type: mrr_at_10
value: 38.0925 - type: mrr_at_100
value: 38.957249999999995 - type: mrr_at_1000
value: 39.01608333333333 - type: mrr_at_3
value: 35.77625 - type: mrr_at_5
value: 37.04991666666667 - type: ndcg_at_1
value: 29.59783333333333 - type: ndcg_at_10
value: 39.343666666666664 - type: ndcg_at_100
value: 44.488249999999994 - type: ndcg_at_1000
value: 46.83358333333334 - type: ndcg_at_3
value: 34.69708333333333 - type: ndcg_at_5
value: 36.75075 - type: precision_at_1
value: 29.59783333333333 - type: precision_at_10
value: 6.884083333333332 - type: precision_at_100
value: 1.114 - type: precision_at_1000
value: 0.15108333333333332 - type: precision_at_3
value: 15.965250000000003 - type: precision_at_5
value: 11.246500000000001 - type: recall_at_1
value: 25.17625 - type: recall_at_10
value: 51.015999999999984 - type: recall_at_100
value: 73.60174999999998 - type: recall_at_1000
value: 89.849 - type: recall_at_3
value: 37.88399999999999 - type: recall_at_5
value: 43.24541666666666 - type: map_at_1
value: 24.537 - type: map_at_10
value: 31.081999999999997 - type: map_at_100
value: 32.042 - type: map_at_1000
value: 32.141 - type: map_at_3
value: 29.137 - type: map_at_5
value: 30.079 - type: mrr_at_1
value: 27.454 - type: mrr_at_10
value: 33.694 - type: mrr_at_100
value: 34.579 - type: mrr_at_1000
value: 34.649 - type: mrr_at_3
value: 32.004 - type: mrr_at_5
value: 32.794000000000004 - type: ndcg_at_1
value: 27.454 - type: ndcg_at_10
value: 34.915 - type: ndcg_at_100
value: 39.641 - type: ndcg_at_1000
value: 42.105 - type: ndcg_at_3
value: 31.276 - type: ndcg_at_5
value: 32.65 - type: precision_at_1
value: 27.454 - type: precision_at_10
value: 5.337 - type: precision_at_100
value: 0.8250000000000001 - type: precision_at_1000
value: 0.11199999999999999 - type: precision_at_3
value: 13.241 - type: precision_at_5
value: 8.895999999999999 - type: recall_at_1
value: 24.537 - type: recall_at_10
value: 44.324999999999996 - type: recall_at_100
value: 65.949 - type: recall_at_1000
value: 84.017 - type: recall_at_3
value: 33.857 - type: recall_at_5
value: 37.316 - type: map_at_1
value: 17.122 - type: map_at_10
value: 24.32 - type: map_at_100
value: 25.338 - type: map_at_1000
value: 25.462 - type: map_at_3
value: 22.064 - type: map_at_5
value: 23.322000000000003 - type: mrr_at_1
value: 20.647 - type: mrr_at_10
value: 27.858 - type: mrr_at_100
value: 28.743999999999996 - type: mrr_at_1000
value: 28.819 - type: mrr_at_3
value: 25.769 - type: mrr_at_5
value: 26.964 - type: ndcg_at_1
value: 20.647 - type: ndcg_at_10
value: 28.849999999999998 - type: ndcg_at_100
value: 33.849000000000004 - type: ndcg_at_1000
value: 36.802 - type: ndcg_at_3
value: 24.799 - type: ndcg_at_5
value: 26.682 - type: precision_at_1
value: 20.647 - type: precision_at_10
value: 5.2170000000000005 - type: precision_at_100
value: 0.906 - type: precision_at_1000
value: 0.134 - type: precision_at_3
value: 11.769 - type: precision_at_5
value: 8.486 - type: recall_at_1
value: 17.122 - type: recall_at_10
value: 38.999 - type: recall_at_100
value: 61.467000000000006 - type: recall_at_1000
value: 82.716 - type: recall_at_3
value: 27.601 - type: recall_at_5
value: 32.471 - type: map_at_1
value: 24.396 - type: map_at_10
value: 33.415 - type: map_at_100
value: 34.521 - type: map_at_1000
value: 34.631 - type: map_at_3
value: 30.703999999999997 - type: map_at_5
value: 32.166 - type: mrr_at_1
value: 28.825 - type: mrr_at_10
value: 37.397000000000006 - type: mrr_at_100
value: 38.286 - type: mrr_at_1000
value: 38.346000000000004 - type: mrr_at_3
value: 35.028 - type: mrr_at_5
value: 36.32 - type: ndcg_at_1
value: 28.825 - type: ndcg_at_10
value: 38.656 - type: ndcg_at_100
value: 43.856 - type: ndcg_at_1000
value: 46.31 - type: ndcg_at_3
value: 33.793 - type: ndcg_at_5
value: 35.909 - type: precision_at_1
value: 28.825 - type: precision_at_10
value: 6.567 - type: precision_at_100
value: 1.0330000000000001 - type: precision_at_1000
value: 0.135 - type: precision_at_3
value: 15.516 - type: precision_at_5
value: 10.914 - type: recall_at_1
value: 24.396 - type: recall_at_10
value: 50.747 - type: recall_at_100
value: 73.477 - type: recall_at_1000
value: 90.801 - type: recall_at_3
value: 37.1 - type: recall_at_5
- type: map_at_1
- task:
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers

支持多种语言
J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入
英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers

英语
O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入
英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入
英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers

其他
B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors
英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文