pipeline_tag: 句子相似度
license: apache-2.0
tags:
DataikuNLP/distiluse-base-multilingual-cased-v1
此模型是句子转换器sentence-transformers模型库在特定提交3a706e4d65c04f868c4684adfd4da74141be8732
的一个副本。
这是一个sentence-transformers模型:它将句子和段落映射到一个512维的密集向量空间,可用于聚类或语义搜索等任务。
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型变得非常简单:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1')
embeddings = model.encode(sentences)
print(embeddings)
评估结果
关于此模型的自动化评估,请参见句子嵌入基准:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用与作者
此模型由sentence-transformers训练。
如果您觉得此模型有帮助,可以引用我们的论文Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}