🚀 DataikuNLP/distiluse-base-multilingual-cased-v1
本模型是来自 sentence-transformers 的 此模型仓库 在特定提交版本 3a706e4d65c04f868c4684adfd4da74141be8732
的副本。
这是一个 sentence-transformers 模型:它可以将句子和段落映射到一个 512 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型使用 sentence-transformers 库,安装该库后即可轻松使用本模型。
📦 安装指南
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1')
embeddings = model.encode(sentences)
print(embeddings)
📚 详细文档
评估结果
要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用与作者
本模型由 sentence-transformers 训练。
如果您觉得该模型有帮助,请引用我们的论文 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
📄 许可证
本项目采用 apache-2.0
许可证。
属性 |
详情 |
模型类型 |
sentence-transformers |
标签 |
sentence-transformers、feature-extraction、sentence-similarity、transformers |
许可证 |
apache-2.0 |
任务标签 |
sentence-similarity |