pipeline_tag: 句子相似度
license: apache-2.0
tags:
DataikuNLP/paraphrase-albert-small-v2
此模型是sentence-transformers模型库在特定提交1eb1996223dd90a4c25be2fc52f6f336419a0d52
的副本。
这是一个sentence-transformers模型:它能将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型非常简单:
pip install -U sentence-transformers
然后可以按如下方式使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('sentence-transformers/paraphrase-albert-small-v2')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
如果不使用sentence-transformers,可以按以下方式使用模型:首先将输入传递给transformer模型,然后对上下文化的词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['这是一个示例句子', '每个句子都会被转换']
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-albert-small-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-albert-small-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
评估结果
关于此模型的自动化评估,请参见句子嵌入基准:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: AlbertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
此模型由sentence-transformers训练。
如果您觉得此模型有帮助,欢迎引用我们的论文Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}