🚀 {MODEL_NAME}
{MODEL_NAME} 是一个 sentence-transformers 模型,它能将句子和段落映射到 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
📦 安装指南
若已安装 sentence-transformers,使用此模型将非常便捷:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
安装完成后,你可以按以下方式使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
若未安装 sentence-transformers,你可以这样使用该模型:首先,将输入数据传入 Transformer 模型,然后对上下文相关的词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
🔍 评估结果
关于此模型的自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
🔧 技术细节
训练参数
该模型使用以下参数进行训练:
数据加载器(DataLoader):
torch.utils.data.dataloader.DataLoader
,长度为 140000,参数如下:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数(Loss):
gpl.toolkit.loss.MarginDistillationLoss
fit()
方法的参数:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 引用与作者
文档中未提供引用和作者相关的更多信息。