pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
- 语义搜索
- 中文
DMetaSoul/sbert-chinese-qmc-finance-v1
该模型基于bert-base-chinese版本的BERT模型,在大规模银行问题匹配数据集(BQCorpus)上进行了训练优化,专为金融领域的问题匹配场景设计,例如:
- "8千日利息400元?" vs "10000元日利息多少钱"
- "提前还款是按全额计息" vs "还款扣款不成功怎么还款?"
- "为什么我借钱交易失败" vs "刚申请的借款为什么会失败"
注:此模型的轻量化版本也已开源!
使用方法
1. Sentence-Transformers
通过sentence-transformers框架使用该模型,首先安装:
pip install -U sentence-transformers
然后使用以下代码加载模型并提取文本表征向量:
from sentence_transformers import SentenceTransformer
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1')
embeddings = model.encode(sentences)
print(embeddings)
2. HuggingFace Transformers
如果不使用sentence-transformers,也可以通过HuggingFace Transformers加载模型并提取文本向量:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
评估
该模型在多个公开语义匹配数据集上进行了评测,计算了向量相似度与真实标签之间的相关性系数:
|
csts_dev |
csts_test |
afqmc |
lcqmc |
bqcorpus |
pawsx |
xiaobu |
sbert-chinese-qmc-finance-v1 |
77.40% |
74.55% |
36.01% |
75.75% |
73.25% |
11.58% |
54.76% |
引用与作者
电子邮箱:xiaowenbin@dmetasoul.com