pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- MTEB
model-index:
- name: sgpt-bloom-1b7-nli
results:
- task:
type: 分类
dataset:
type: mteb/amazon_reviews_multi
name: MTEB亚马逊评论分类(法语)
config: fr
split: 测试集
revision: c379a6705fec24a2493fa68e011692605f44e119
metrics:
- type: 准确率
value: 39.286
- type: F1值
value: 38.87078070073539
- task:
type: 分类
dataset:
type: mteb/amazon_reviews_multi
name: MTEB亚马逊评论分类(中文)
config: zh
split: 测试集
revision: c379a6705fec24a2493fa68e011692605f44e119
metrics:
- type: 准确率
value: 37.634
- type: F1值
value: 36.86046604093418
- task:
type: 分类
dataset:
type: mteb/mtop_domain
name: MTEB MTOP领域分类(法语)
config: fr
split: 测试集
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
metrics:
- type: 准确率
value: 83.79893517068588
- type: F1值
value: 83.72326662566203
- task:
type: 分类
dataset:
type: mteb/mtop_intent
name: MTEB MTOP意图分类(法语)
config: fr
split: 测试集
revision: 6299947a7777084cc2d4b64235bf7190381ce755
metrics:
- type: 准确率
value: 63.36047604134043
- type: F1值
value: 44.261707019308126
- task:
type: 分类
dataset:
type: mteb/amazon_massive_intent
name: MTEB大规模意图分类(法语)
config: fr
split: 测试集
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
metrics:
- type: 准确率
value: 64.57632817753867
- type: F1值
value: 62.60453982786661
- task:
type: 分类
dataset:
type: mteb/amazon_massive_scenario
name: MTEB大规模场景分类(法语)
config: fr
split: 测试集
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: 准确率
value: 69.59986550100874
- type: F1值
value: 69.71803697939914
- task:
type: 语义文本相似度
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22(中文)
config: zh
split: 测试集
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
metrics:
- type: 余弦相似度皮尔逊
value: 59.71781185663265
- type: 余弦相似度斯皮尔曼
value: 58.538648447630514
- type: 欧氏距离皮尔逊
value: 53.53848180206165
- type: 欧氏距离斯皮尔曼
value: 56.33730262964236
- type: 曼哈顿距离皮尔逊
value: 54.62109820575505
- type: 曼哈顿距离斯皮尔曼
value: 57.223846291318914
- task:
type: 语义文本相似度
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22(法语)
config: fr
split: 测试集
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
metrics:
- type: 余弦相似度皮尔逊
value: 73.44021434651606
- type: 余弦相似度斯皮尔曼
value: 73.13412769502769
- type: 欧氏距离皮尔逊
value: 68.16368597409867
- type: 欧氏距离斯皮尔曼
value: 72.44964781564485
- type: 曼哈顿距离皮尔逊
value: 69.42307032478939
- type: 曼哈顿距离斯皮尔曼
value: 73.3523195012387
sgpt-bloom-1b7-nli
使用方法
使用说明请参考:https://github.com/Muennighoff/sgpt#symmetric-semantic-search
模型训练命令如下:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/nli/training_nli_v2.py --model_name bigscience/bloom-1b3 --freezenonbias --train_batch_size 128 --lr 32e-5 --pooling weightedmean --wandb --wandbwatchlog gradients --gradcache --chunksize 4
评估结果
{'askubuntu': 57.44, 'cqadupstack': 14.18, 'twitterpara': 73.99, 'scidocs': 74.74, 'avg': 55.087500000000006}
训练过程
模型训练参数如下:
数据加载器:
使用sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度4403,参数:
{'batch_size': 128}
该模型采用BitFit、加权平均池化和梯度缓存技术,详见论文:https://arxiv.org/abs/2202.08904
损失函数:
sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache
训练方法参数:
{
"epochs": 1,
"evaluation_steps": 440,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.00032
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 441,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) 内含Transformer模型: BloomModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
引用与作者
@article{muennighoff2022sgpt,
title={SGPT: GPT句子嵌入在语义搜索中的应用},
author={Muennighoff, Niklas},
journal={arXiv预印本 arXiv:2202.08904},
year={2022}
}