语言: 英语
数据集:
- librispeech_asr
标签:
- 音频
- 自动语音识别
流水线标签: 自动语音识别
小部件:
- 示例标题: Librispeech 样本1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- 示例标题: Librispeech 样本2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
许可证: mit
S2T-MEDIUM-LIBRISPEECH-ASR
s2t-medium-librispeech-asr
是一个用于自动语音识别(ASR)的语音到文本转换器(S2T)模型。该S2T模型在这篇论文中提出,并在此代码库中发布。
模型描述
S2T是一个端到端的序列到序列转换器模型。它使用标准的自回归交叉熵损失进行训练,并以自回归方式生成转录文本。
预期用途与限制
此模型可用于端到端语音识别(ASR)。查看模型中心以寻找其他S2T检查点。
使用方法
由于这是一个标准的序列到序列转换器模型,您可以通过将语音特征传递给模型,使用generate
方法生成转录文本。
注意:Speech2TextProcessor
对象使用torchaudio提取滤波器组特征。在运行此示例前,请确保安装torchaudio
包。
您可以通过pip install transformers"[speech, sentencepiece]"
安装这些额外的语音依赖项,或单独安装包pip install torchaudio sentencepiece
。
import torch
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from datasets import load_dataset
import soundfile as sf
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
ds = load_dataset(
"patrickvonplaten/librispeech_asr_dummy",
"clean",
split="validation"
)
ds = ds.map(map_to_array)
input_features = processor(
ds["speech"][0],
sampling_rate=16_000,
return_tensors="pt"
).input_features
generated_ids = model.generate(input_features=input_features)
transcription = processor.batch_decode(generated_ids)
LibriSpeech测试集评估
以下脚本展示如何评估此模型在LibriSpeech的*"clean"和"other"*测试数据集上的表现。
from datasets import load_dataset
from evaluate import load
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
wer = load("wer")
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr").to("cuda")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr", do_upper_case=True)
def map_to_pred(batch):
features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
input_features = features.input_features.to("cuda")
attention_mask = features.attention_mask.to("cuda")
gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask)
batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)[0]
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer.compute(predictions=result["transcription"], references=result["text"]))
结果(WER):