语言: 葡萄牙语
数据集:
- 常见语音数据集
评估指标:
- 词错误率(WER)
标签:
- 音频
- 语音
- wav2vec2
- 葡萄牙语
- Apache-2.0许可证
- 葡萄牙语语音语料库
- 自动语音识别
- 语音
- PyTorch框架
- VoxPopuli项目
许可证: Apache-2.0
模型索引:
- 名称: JoaoAlvarenga Wav2Vec2 Large 100k VoxPopuli葡萄牙语模型
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 常见语音葡萄牙语数据集
类型: common_voice
参数: pt
指标:
- 名称: 测试词错误率
类型: wer
值: 19.735723%
Wav2Vec2-Large-100k-VoxPopuli-葡萄牙语模型
基于facebook/wav2vec2-large-100k-voxpopuli模型,使用常见语音数据集对葡萄牙语进行微调。
使用方法
该模型可直接使用(无需语言模型),示例如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估方法
可通过以下方式在常见语音数据集的葡萄牙语测试集上评估模型性能。
需安装Enelvo(基于推特用户帖子的开源拼写校正工具):
pip install enelvo
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from enelvo import normaliser
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
norm = normaliser.Normaliser()
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = [norm.normalise(i) for i in processor.batch_decode(pred_ids)]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("词错误率: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果(词错误率): 19.735723%
训练说明
使用常见语音数据集的train
和validation
子集进行训练。