B
Bp500 Xlsr
由 lgris 开发
这是一个针对巴西葡萄牙语微调的Wav2vec 2.0模型,使用了多个巴西葡萄牙语数据集进行训练,在Common Voice测试集上WER为13.6。
下载量 21
发布时间 : 3/2/2022
模型介绍
内容详情
替代品
模型简介
该模型是基于Wav2vec 2.0架构的自动语音识别(ASR)模型,专门针对巴西葡萄牙语进行了优化。它整合了多个巴西葡萄牙语数据集,包括CETUC、Common Voice、LaPS BM等,总训练数据量超过400小时。
模型特点
多数据集训练
整合了7个不同的巴西葡萄牙语数据集,总训练时长超过400小时
语言模型支持
支持与4-gram语言模型结合使用,可进一步提升识别准确率
低WER
在多个测试集上表现优异,平均WER为10.8%
模型能力
巴西葡萄牙语语音识别
支持多种音频采样率
可结合语言模型提升性能
使用案例
语音转文字
语音转录
将巴西葡萄牙语语音内容转换为文字
在Common Voice测试集上WER为13.6%
语音助手
巴西葡萄牙语语音指令识别
用于巴西葡萄牙语语音助手的前端语音识别
语言: pt 数据集:
- common_voice
- mls
- cetuc
- lapsbm
- voxforge
- tedx
- sid 评估指标:
- wer 标签:
- 音频
- 语音
- wav2vec2
- pt
- 葡萄牙语语音语料库
- 自动语音识别
- 语音
- PyTorch
- hf-asr-leaderboard 模型索引:
- 名称: bp400-xlsr
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice
类型: common_voice
参数: pt
评估指标:
- 名称: 测试WER 类型: wer 值: 13.6 许可证: apache-2.0
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice
类型: common_voice
参数: pt
评估指标:
bp500-xlsr: 基于巴西葡萄牙语(BP)数据集的Wav2vec 2.0模型
这是一个针对巴西葡萄牙语微调的Wav2vec模型演示,使用了以下数据集:
- CETUC: 包含约145小时的巴西葡萄牙语语音,由50名男性和50名女性发音人录制,每人朗读约1,000条从CETEN-Folha语料库中选取的音素平衡句子;
- Common Voice 7.0: 由Mozilla基金会发起,旨在创建多语言的开放数据集。志愿者通过官方网站捐赠并验证语音;
- Lapsbm: "Falabrasil - UFPA"是Fala Brasil团队用于巴西葡萄牙语ASR系统基准测试的数据集。包含35名发音人(10名女性),每人朗读20条独特句子,总计700条巴西葡萄牙语语音。音频以22.05 kHz采样率录制,无环境控制;
- Multilingual Librispeech (MLS): 多语言大规模数据集。MLS基于LibriVox等公共领域的有声书录音。葡萄牙语子集本工作所用部分(主要为巴西变体)包含约284小时语音,来自62名发音人朗读的55本有声书;
- VoxForge: 旨在构建声学模型开放数据集的项目。该语料库包含约100名发音人和4,130条巴西葡萄牙语语音,采样率从16kHz到44.1kHz不等。
这些数据集被合并构建更大的巴西葡萄牙语数据集。除Common Voice的开发/测试集用于验证/测试外,所有数据均用于训练。我们还为所有收集的数据集制作了测试集。
数据集 | 训练 | 验证 | 测试 |
---|---|---|---|
CETUC | 93.9h | -- | 5.4h |
Common Voice | 37.6h | 8.9h | 9.5h |
LaPS BM | 0.8h | -- | 0.1h |
MLS | 161.0h | -- | 3.7h |
Multilingual TEDx (Portuguese) | 144.2h | -- | 1.8h |
SID | 5.0h | -- | 1.0h |
VoxForge | 2.8h | -- | 0.1h |
总计 | 437.2h | 8.9h | 21.6h |
原始模型使用fairseq微调。本笔记本使用转换后的版本。原始fairseq模型链接此处。
摘要
CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |
---|---|---|---|---|---|---|---|---|
bp_500 (下方演示) | 0.051 | 0.136 | 0.032 | 0.118 | 0.095 | 0.248 | 0.082 | 0.108 |
bp_500 + 4-gram (下方演示) | 0.032 | 0.097 | 0.022 | 0.114 | 0.125 | 0.246 | 0.065 | 0.100 |
转录示例
文本 | 转录 |
---|---|
não há um departamento de mediadores independente das federações e das agremiações | não há um dearamento de mediadores independente das federações e das agrebiações |
mas que bodega | masque bodega |
a cortina abriu o show começou | a cortina abriu o chô começou |
por sorte havia uma passadeira | busote avinhoa passadeiro |
estou maravilhada está tudo pronto | stou estou maravilhada está tudo pronto |
演示
MODEL_NAME = "lgris/bp500-xlsr"
导入和依赖
%%capture
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install datasets
!pip install jiwer
!pip install transformers
!pip install soundfile
!pip install pyctcdecode
!pip install https://github.com/kpu/kenlm/archive/master.zip
import jiwer
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
from pyctcdecode import build_ctcdecoder
import torch
import re
import sys
辅助函数
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = 16_000
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
batch["target"] = batch["sentence"]
return batch
def calc_metrics(truths, hypos):
wers = []
mers = []
wils = []
for t, h in zip(truths, hypos):
try:
wers.append(jiwer.wer(t, h))
mers.append(jiwer.mer(t, h))
wils.append(jiwer.wil(t, h))
except: # 空字符串?
pass
wer = sum(wers)/len(wers)
mer = sum(mers)/len(mers)
wil = sum(wils)/len(wils)
return wer, mer, wil
def load_data(dataset):
data_files = {'test': f'{dataset}/test.csv'}
dataset = load_dataset('csv', data_files=data_files)["test"]
return dataset.map(map_to_array)
模型
class STT:
def __init__(self,
model_name,
device='cuda' if torch.cuda.is_available() else 'cpu',
lm=None):
self.model_name = model_name
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.vocab_dict = self.processor.tokenizer.get_vocab()
self.sorted_dict = {
k.lower(): v for k, v in sorted(self.vocab_dict.items(),
key=lambda item: item[1])
}
self.device = device
self.lm = lm
if self.lm:
self.lm_decoder = build_ctcdecoder(
list(self.sorted_dict.keys()),
self.lm
)
def batch_predict(self, batch):
features = self.processor(batch["speech"],
sampling_rate=batch["sampling_rate"][0],
padding=True,
return_tensors="pt")
input_values = features.input_values.to(self.device)
attention_mask = features.attention_mask.to(self.device)
with torch.no_grad():
logits = self.model(input_values, attention_mask=attention_mask).logits
if self.lm:
logits = logits.cpu().numpy()
batch["predicted"] = []
for sample_logits in logits:
batch["predicted"].append(self.lm_decoder.decode(sample_logits))
else:
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = self.processor.batch_decode(pred_ids)
return batch
下载数据集
%%capture
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI
!mkdir bp_dataset
!unzip bp_dataset -d bp_dataset/
%cd bp_dataset
/content/bp_dataset
测试
stt = STT(MODEL_NAME)
CETUC
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
CETUC WER: 0.05159097808687998
Common Voice
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
CV WER: 0.13659981509705973
LaPS
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
Laps WER: 0.03196969696969697
MLS
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
MLS WER: 0.1178481066463896
SID
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
Sid WER: 0.09544588416964224
TEDx
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
TEDx WER: 0.24868046340420813
VoxForge
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
VoxForge WER: 0.08246076839826841
使用语言模型的测试
!rm -rf ~/.cache
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # 基于维基百科训练
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # 基于bp训练
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa')
Cetuc
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
CETUC WER: 0.03222801788375573
Common Voice
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
CV WER: 0.09713866021093655
LaPS
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
Laps WER: 0.022310606060606065
MLS
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
MLS WER: 0.11408590958696524
SID
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
Sid WER: 0.12502797252979136
TEDx
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
TEDx WER: 0.24603179403904793
VoxForge
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
VoxForge WER: 0.06542207792207791
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别
其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别
支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers

支持多种语言
W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别
其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别
中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别
其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别
日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers

支持多种语言
M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别
阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文