语言: el
数据集:
- common_voice
指标:
- wer
标签:
- 音频
- 自动语音识别
- 语音
- xlsr微调周
许可证: apache-2.0
模型索引:
- 名称: Greek XLSR Wav2Vec2 Large 53
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: Common Voice el
类型: common_voice
参数: el
指标:
- 名称: 测试WER
类型: wer
值: 45.048955
Wav2Vec2-Large-XLSR-53-Greek
基于facebook/wav2vec2-large-xlsr-53在希腊语Common Voice数据集上微调而成。
希腊语CV数据中男性声音占多数。为平衡数据,采用slack讨论的方法合成了女性声音,使用Common Voice数据集文本通过Google的TTS标准语音模型生成女性说话人音频。
微调过程:
- 在facebook/wav2vec2-large-xlsr-53上使用希腊语CommonVoice训练5轮 → 56.25% WER
- 从检查点继续训练15轮 → 34.00%
- 添加合成女性声音后训练12轮 → 34.00%(无变化)
使用该模型时,请确保语音输入采样率为16kHz。
使用方式
可直接使用模型(无需语言模型)如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "el", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1")
model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可在Common Voice希腊语测试数据上评估模型:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "el", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1")
model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 45.05%
训练
使用了Common Voice的train
、validation
数据集及合成数据进行训练。
训练脚本链接待补充(若在colab中训练请填写链接;若本地训练建议上传至GitHub后提供链接)