Legal BERTimbau Sts Base Ma V2
模型简介
模型特点
模型能力
使用案例
🚀 rufimelo/Legal-BERTimbau-sts-base-ma
这是一个 sentence-transformers 模型,它能将句子和段落映射到一个 768 维的密集向量空间,可用于聚类或语义搜索等任务。rufimelo/rufimelo/Legal-BERTimbau-sts-base-ma 基于 Legal-BERTimbau-base,而后者源自 BERTimbau 大模型。该模型适用于葡萄牙语法律领域,并在葡萄牙语数据集上针对语义文本相似度(STS)进行了训练。
🚀 快速开始
安装依赖
使用此模型,你需要安装 sentence-transformers:
pip install -U sentence-transformers
运行示例代码
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主要特性
- 向量映射:能够将句子和段落映射到 768 维的密集向量空间。
- 多任务适用:可用于聚类、语义搜索等任务。
- 领域适配:针对葡萄牙语法律领域进行了适配。
- 多数据集训练:在多个葡萄牙语数据集上进行了训练。
📦 安装指南
若要使用该模型,需安装 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果 STS
模型 | Assin | Assin2 | stsb_multi_mt pt | 平均 |
---|---|---|---|---|
Legal-BERTimbau-sts-base | 0.71457 | 0.73545 | 0.72383 | 0.72462 |
Legal-BERTimbau-sts-base-ma | 0.74874 | 0.79532 | 0.82254 | 0.78886 |
Legal-BERTimbau-sts-base-ma-v2 | 0.75481 | 0.80262 | 0.82178 | 0.79307 |
Legal-BERTimbau-base-TSDAE-sts | 0.78814 | 0.81380 | 0.75777 | 0.78657 |
Legal-BERTimbau-sts-large | 0.76629 | 0.82357 | 0.79120 | 0.79369 |
Legal-BERTimbau-sts-large-v2 | 0.76299 | 0.81121 | 0.81726 | 0.79715 |
Legal-BERTimbau-sts-large-ma | 0.76195 | 0.81622 | 0.82608 | 0.80142 |
Legal-BERTimbau-sts-large-ma-v2 | 0.7836 | 0.8462 | 0.8261 | 0.81863 |
Legal-BERTimbau-sts-large-ma-v3 | 0.7749 | 0.8470 | 0.8364 | 0.81943 |
Legal-BERTimbau-large-v2-sts | 0.71665 | 0.80106 | 0.73724 | 0.75165 |
Legal-BERTimbau-large-TSDAE-sts | 0.72376 | 0.79261 | 0.73635 | 0.75090 |
Legal-BERTimbau-large-TSDAE-sts-v2 | 0.81326 | 0.83130 | 0.786314 | 0.81029 |
Legal-BERTimbau-large-TSDAE-sts-v3 | 0.80703 | 0.82270 | 0.77638 | 0.80204 |
---------------------------------------- | ---------- | ---------- | ---------- | ---------- |
BERTimbau base Fine-tuned for STS | 0.78455 | 0.80626 | 0.82841 | 0.80640 |
BERTimbau large Fine-tuned for STS | 0.78193 | 0.81758 | 0.83784 | 0.81245 |
---------------------------------------- | ---------- | ---------- | ---------- | ---------- |
paraphrase-multilingual-mpnet-base-v2 | 0.71457 | 0.79831 | 0.83999 | 0.78429 |
paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s) | 0.77641 | 0.79831 | 0.84575 | 0.80682 |
训练过程
rufimelo/Legal-BERTimbau-sts-base-ma-v2 基于 Legal-BERTimbau-base,而后者源自 BERTimbau 基础模型。
首先,由于葡萄牙语数据集的缺乏,该模型采用多语言知识蒸馏进行训练。在多语言知识蒸馏过程中,教师模型为 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',假定支持的语言为英语,要学习的语言为葡萄牙语。
该模型针对语义文本相似度进行了训练,并在 assin、assin2 和 stsb_multi_mt pt 数据集上进行了微调。
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用与作者
如果你使用了此工作,请引用以下文献:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
🔧 技术细节
数据集
属性 | 详情 |
---|---|
模型类型 | 基于 Sentence-Transformers 的模型 |
训练数据 | assin、assin2、stsb_multi_mt、rufimelo/PortugueseLegalSentences-v0 |
训练方法
- 多语言知识蒸馏:由于葡萄牙语数据集的缺乏,使用多语言知识蒸馏进行训练,教师模型为 'sentence-transformers/paraphrase-xlm-r-multilingual-v1'。
- 微调:在多个葡萄牙语数据集上进行微调,以适应语义文本相似度任务。
模型架构
模型基于 SentenceTransformer 构建,包含 Transformer 层和 Pooling 层,具体架构如下:
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
评估指标
使用 Pearson 相关性作为评估指标,在多个数据集上进行评估,以衡量模型在语义文本相似度任务上的性能。
代码实现
在代码实现中,使用了 Sentence-Transformers 和 HuggingFace Transformers 库,通过简单的代码即可加载和使用模型,具体示例如下:
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)







