pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
- 语义搜索
- 中文
DMetaSoul/sbert-chinese-general-v2
该模型基于bert-base-chinese版本的BERT模型,在百万级语义相似度数据集SimCLUE上训练而成,专为通用语义匹配场景设计。实际测试表明,该模型在各类任务中展现出更优异的泛化能力。
注:此模型的轻量化版本已同步开源!
使用指南
1. Sentence-Transformers
通过sentence-transformers框架使用本模型,请先执行安装:
pip install -U sentence-transformers
随后通过以下代码加载模型并提取文本嵌入向量:
from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2')
embeddings = model.encode(sentences)
print(embeddings)
2. HuggingFace Transformers
若不使用sentence-transformers框架,也可通过HuggingFace Transformers加载模型:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("语句嵌入向量:")
print(sentence_embeddings)
性能评估
本模型在多个公开语义匹配数据集上进行了评测,计算了向量相似度与真实标签的相关系数:
|
csts_dev |
csts_test |
afqmc |
lcqmc |
bqcorpus |
pawsx |
xiaobu |
sbert-chinese-general-v1 |
84.54% |
82.17% |
23.80% |
65.94% |
45.52% |
11.52% |
48.51% |
sbert-chinese-general-v2 |
77.20% |
72.60% |
36.80% |
76.92% |
49.63% |
16.24% |
63.16% |
上表对比了本模型与前代sbert-chinese-general-v1的表现差异,可见本模型在多数任务中展现出更强的泛化能力。
引用与作者
联系邮箱:xiaowenbin@dmetasoul.com