language: zh
datasets:
- librispeech_asr
tags:
- 语音
- 音频
- 自动语音识别
- hf-asr-leaderboard
license: apache-2.0
model-index:
- name: wav2vec2-large-100h-lv60
results:
- task:
name: 自动语音识别
type: automatic-speech-recognition
dataset:
name: Librispeech (clean)
type: librispeech_asr
args: en
metrics:
- name: 测试WER
type: wer
value: None
Wav2Vec2-Large-100h-Lv60 + 自训练
这是直接从fairseq迁移到huggingface的state_dict,权重完全一致
Facebook的Wav2Vec2
该大模型基于100小时的Libri-Light和Librispeech语音数据在16kHz采样率下进行预训练和微调。模型采用自训练目标训练。使用时请确保语音输入同样以16kHz采样。
论文
作者:Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
摘要
我们首次证明,仅从语音音频中学习强大表征后通过转录语音微调,可以在概念更简单的同时超越最佳半监督方法。wav2vec 2.0在潜在空间中对语音输入进行掩码,并通过联合学习的潜在表征量化解决对比任务。使用Librispeech全部标注数据的实验在clean/other测试集上达到1.8/3.3 WER。当标注数据降至1小时,wav2vec 2.0在使用100倍少标注数据的情况下,仍优于100小时子集的先前最优结果。仅用10分钟标注数据和53k小时无监督数据预训练,仍可实现4.8/8.2 WER。这证明了有限标注数据下语音识别的可行性。
原始模型参见:https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20。
使用说明
作为独立声学模型转录音频文件的方法如下:
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self")
model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
评估
以下代码展示如何在LibriSpeech的"clean"和"other"测试数据上评估facebook的Splend1dchan/wav2vec2-large-100h-lv60-self模型。
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self")
def map_to_pred(batch):
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))