语言: 英文
数据集:
标签:
- 语音
- 音频
- 自动语音识别
- hf-asr-leaderboard
许可证: apache-2.0
模型索引:
- 名称: wav2vec2-conformer-rel-pos-large-960h-ft
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: LibriSpeech (clean)
类型: librispeech_asr
配置: clean
拆分: test
参数:
语言: en
指标:
- 名称: 测试WER
类型: wer
值: 1.85
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: LibriSpeech (other)
类型: librispeech_asr
配置: other
拆分: test
参数:
语言: en
指标:
- 名称: 测试WER
类型: wer
值: 3.83
采用相对位置嵌入的Wav2Vec2-Conformer-Large-960h模型
此Wav2Vec2-Conformer模型采用相对位置嵌入技术,基于16kHz采样的语音音频,在960小时的Librispeech数据上进行了预训练和微调。使用时请确保输入语音同样以16kHz采样。
论文: fairseq S2T: 基于fairseq的快速语音到文本建模
作者: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino
Wav2Vec2-Conformer的性能结果详见官方论文的表3和表4。
原始模型参见: https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20
使用方法
作为独立声学模型转录音频文件示例如下:
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
from datasets import load_dataset
import torch
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
评估
以下代码展示如何在LibriSpeech的"clean"和"other"测试集上评估facebook/wav2vec2-conformer-rel-pos-large-960h-ft模型:
from datasets import load_dataset
from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
def map_to_pred(batch):
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
词错误率(WER)结果:
"clean" |
"other" |
1.85 |
3.82 |