license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-vios-commonvoice-1
results: []
wav2vec2-base-vios-commonvoice-1
该模型是基于facebook/wav2vec2-xls-r-300m在None数据集上微调的版本,在评估集上取得了以下结果:
- 损失值:0.8913
- 词错误率(WER):0.3621
模型描述
需补充更多信息
预期用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e-05
- 训练批次大小:8
- 评估批次大小:8
- 随机种子:42
- 梯度累积步数:2
- 总训练批次大小:16
- 优化器:Adam(beta1=0.9,beta2=0.999,epsilon=1e-08)
- 学习率调度器类型:线性
- 学习率预热步数:1000
- 训练轮次:30
- 混合精度训练:原生AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
词错误率 |
3.4706 |
0.55 |
500 |
3.4725 |
1.0 |
3.202 |
1.1 |
1000 |
2.7555 |
1.0008 |
1.0507 |
1.66 |
1500 |
1.0481 |
0.6196 |
0.7325 |
2.21 |
2000 |
0.8120 |
0.4958 |
0.599 |
2.76 |
2500 |
0.7035 |
0.4447 |
0.5224 |
3.31 |
3000 |
0.6761 |
0.4078 |
0.4844 |
3.86 |
3500 |
0.6688 |
0.4011 |
0.4234 |
4.42 |
4000 |
0.6080 |
0.3729 |
0.4237 |
4.97 |
4500 |
0.5953 |
0.3556 |
0.3986 |
5.52 |
5000 |
0.6054 |
0.3478 |
0.3554 |
6.07 |
5500 |
0.6193 |
0.3479 |
0.3446 |
6.62 |
6000 |
0.5809 |
0.3302 |
0.3104 |
7.17 |
6500 |
0.5713 |
0.3283 |
0.3166 |
7.73 |
7000 |
0.5593 |
0.3133 |
0.2938 |
8.28 |
7500 |
0.5645 |
0.3081 |
0.3061 |
8.83 |
8000 |
0.5508 |
0.3020 |
0.2986 |
9.38 |
8500 |
0.5462 |
0.3024 |
0.2939 |
9.93 |
9000 |
0.5544 |
0.3028 |
0.2633 |
10.49 |
9500 |
0.5496 |
0.3024 |
0.2683 |
11.04 |
10000 |
0.5439 |
0.2946 |
0.2714 |
11.59 |
10500 |
0.5524 |
0.2947 |
0.2354 |
12.14 |
11000 |
0.5267 |
0.2918 |
0.2488 |
12.69 |
11500 |
0.5728 |
0.2938 |
0.2479 |
13.25 |
12000 |
0.5802 |
0.2951 |
0.245 |
13.8 |
12500 |
0.5571 |
0.2890 |
0.2422 |
14.35 |
13000 |
0.5531 |
0.2871 |
0.2369 |
14.9 |
13500 |
0.5453 |
0.2860 |
0.2345 |
15.45 |
14000 |
0.5452 |
0.2847 |
0.2507 |
16.0 |
14500 |
0.5536 |
0.2884 |
0.2454 |
16.56 |
15000 |
0.5577 |
0.2871 |
0.2729 |
17.11 |
15500 |
0.6019 |
0.2931 |
0.2743 |
17.66 |
16000 |
0.5619 |
0.2905 |
0.3031 |
18.21 |
16500 |
0.6401 |
0.3006 |
0.315 |
18.76 |
17000 |
0.6044 |
0.2990 |
0.4025 |
19.32 |
17500 |
0.6739 |
0.3304 |
0.4915 |
19.87 |
18000 |
0.7267 |
0.3472 |
0.5539 |
20.42 |
18500 |
0.8078 |
0.3483 |
0.7138 |
20.97 |
19000 |
0.9362 |
0.3765 |
0.5766 |
21.52 |
19500 |
0.7921 |
0.3392 |
0.688 |
22.08 |
20000 |
0.8833 |
0.3693 |
0.6964 |
22.63 |
20500 |
0.9137 |
0.3469 |
0.7389 |
23.18 |
21000 |
0.9379 |
0.3460 |
0.7851 |
23.73 |
21500 |
1.0438 |
0.3653 |
0.7619 |
24.28 |
22000 |
0.9313 |
0.3873 |
0.7175 |
24.83 |
22500 |
0.8668 |
0.3789 |
0.6842 |
25.39 |
23000 |
0.8243 |
0.3761 |
0.6941 |
25.94 |
23500 |
0.8557 |
0.3804 |
0.7167 |
26.49 |
24000 |
0.8618 |
0.3875 |
0.721 |
27.04 |
24500 |
0.8686 |
0.3764 |
0.6949 |
27.59 |
25000 |
0.8773 |
0.3690 |
0.727 |
28.15 |
25500 |
0.8769 |
0.3666 |
0.7363 |
28.7 |
26000 |
0.8867 |
0.3634 |
0.7157 |
29.25 |
26500 |
0.8895 |
0.3626 |
0.7385 |
29.8 |
27000 |
0.8913 |
0.3621 |
框架版本
- Transformers 4.19.3
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1