语言:俄语
数据集:
- SberDevices/Golos
- bond005/sova_rudevices
- bond005/rulibrispeech
评估指标:
- 词错误率(WER)
- 字符错误率(CER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证:Apache-2.0
示例:
- 标题:俄语测试音频“神经网络是好的”
音频链接:https://huggingface.co/bond005/wav2vec2-large-ru-golos/resolve/main/test_sound_ru.flac
模型索引:
- 名称:Ivan Bondarenko的XLSR Wav2Vec2俄语模型
结果:
- 任务:
名称:语音识别
类型:自动语音识别
数据集:
名称:Sberdevices Golos(众包)
类型:SberDevices/Golos
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:10.144
- 名称:测试CER
类型:cer
值:2.168
- 任务:
名称:语音识别
类型:自动语音识别
数据集:
名称:Sberdevices Golos(远场)
类型:SberDevices/Golos
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:20.353
- 名称:测试CER
类型:cer
值:6.030
- 任务:
名称:自动语音识别
类型:自动语音识别
数据集:
名称:Common Voice俄语
类型:common_voice
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:18.548
- 名称:测试CER
类型:cer
值:4.000
- 任务:
名称:自动语音识别
类型:自动语音识别
数据集:
名称:Sova RuDevices
类型:bond005/sova_rudevices
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:25.410
- 名称:测试CER
类型:cer
值:7.965
- 任务:
名称:自动语音识别
类型:自动语音识别
数据集:
名称:俄语Librispeech
类型:bond005/rulibrispeech
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:21.872
- 名称:测试CER
类型:cer
值:4.469
- 任务:
名称:自动语音识别
类型:自动语音识别
数据集:
名称:Voxforge俄语
类型:dangrebenkin/voxforge-ru-dataset
参数:俄语
指标:
- 名称:测试WER
类型:wer
值:27.084
- 名称:测试CER
类型:cer
值:6.986
Wav2Vec2-Large-Ru-Golos
Wav2Vec2模型基于facebook/wav2vec2-large-xlsr-53,使用Sberdevices Golos数据集在俄语上进行了微调,并应用了音高变换、声音加速/减速、混响等音频增强技术。
使用此模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可作为独立的声学模型转录音频文件,示例如下:
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
processor = Wav2Vec2Processor.from_pretrained("bond005/wav2vec2-large-ru-golos")
model = Wav2Vec2ForCTC.from_pretrained("bond005/wav2vec2-large-ru-golos")
ds = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test")
processed = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest")
logits = model(processed.input_values, attention_mask=processed.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)
评估
以下代码片段展示了如何在Golos数据集的“crowd”和“farfield”测试数据上评估bond005/wav2vec2-large-ru-golos模型。
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer, cer
golos_crowd_test = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test")
golos_crowd_test = golos_crowd_test.filter(
lambda it1: (it1["transcription"] is not None) and (len(it1["transcription"].strip()) > 0)
)
golos_farfield_test = load_dataset("bond005/sberdevices_golos_100h_farfield", split="test")
golos_farfield_test = golos_farfield_test.filter(
lambda it2: (it2["transcription"] is not None) and (len(it2["transcription"].strip()) > 0)
)
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_pred(batch):
processed = processor(
batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"],
return_tensors="pt", padding="longest"
)
input_values = processed.input_values.to("cuda")
attention_mask = processed.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["text"] = transcription[0]
return batch
crowd_result = golos_crowd_test.map(map_to_pred, remove_columns=["audio"])
crowd_wer = wer(crowd_result["transcription"], crowd_result["text"])
crowd_cer = cer(crowd_result["transcription"], crowd_result["text"])
print("Crowd领域的词错误率:", crowd_wer)
print("Crowd领域的字符错误率:", crowd_cer)
farfield_result = golos_farfield_test.map(map_to_pred, remove_columns=["audio"])
farfield_wer = wer(farfield_result["transcription"], farfield_result["text"])
farfield_cer = cer(farfield_result["transcription"], farfield_result["text"])
print("Farfield领域的词错误率:", farfield_wer)
print("Farfield领域的字符错误率:", farfield_cer)
结果(WER,%):
"crowd" |
"farfield" |
10.144 |
20.353 |
结果(CER,%):
"crowd" |
"farfield" |
2.168 |
6.030 |
您可以在我的Kaggle页面上查看其他数据集(包括俄语Librispeech和SOVA RuDevices)的评估脚本:https://www.kaggle.com/code/bond005/wav2vec2-ru-eval
引用
如需引用此模型,请使用以下格式:
@misc{bondarenko2022wav2vec2-large-ru-golos,
title={XLSR Wav2Vec2俄语模型 by Ivan Bondarenko},
author={Bondarenko, Ivan},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/bond005/wav2vec2-large-ru-golos}},
year={2022}
}