pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
language:
- 波兰语
license: cc-by-sa-4.0
library_name: sentence-transformers
datasets:
- radlab/polish-sts-dataset
models:
- sdadas/polish-roberta-large-v2
radlab/polish-sts-v2
这是一个基于sentence-transformers的模型:它能将句子和段落映射到一个1024维的密集向量空间,可用于聚类或语义搜索等任务。
基础模型采用了sdadas/polish-roberta-large-v2
。
该模型已弃用,现由radlab/polish-bi-encoder-mean替代。
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用:
pip install -U sentence-transformers
然后按如下方式调用:
from sentence_transformers import SentenceTransformer
sentences = ["Ala有只猫", "Ala有只狗"]
model = SentenceTransformer('radlab/polish-sts-v2')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
若不使用sentence-transformers,需先通过transformer模型处理输入,再对上下文词嵌入执行池化操作:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['Ala有只猫', 'Ala有只狗']
tokenizer = AutoTokenizer.from_pretrained('radlab/polish-sts-v2')
model = AutoModel.from_pretrained('radlab/polish-sts-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
训练过程
模型训练参数如下:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度8225,参数:
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
训练方法参数:
{
"epochs": 5,
"evaluation_steps": 250,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 4113,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)