pipeline_tag: 句子相似度
tags:
keyphrase-mpnet-v1
这是一个专为短语优化的sentence-transformers模型:它将短语映射到768维稠密向量空间,可用于聚类或语义搜索等任务。在原论文中,该模型用于计算基于语义的关键短语模型评估指标。
本模型基于sentence-transformers/all-mpnet-base-v2,并通过SimCSE方法在100万条关键短语数据上进行了微调。
引用与作者
论文:KPEval: Towards Fine-grained Semantic-based Keyphrase Evaluation
@inproceedings{wu-etal-2024-kpeval,
title = "{KPE}val: 基于细粒度语义的关键短语评估",
author = "吴迪 和
尹达 和
常凯威",
editor = "Ku, Lun-Wei 和
Martins, Andre 和
Srikumar, Vivek",
booktitle = "ACL 2024计算语言学协会发现",
month = "8月",
year = "2024",
address = "泰国曼谷及线上会议",
publisher = "计算语言学协会",
url = "https://aclanthology.org/2024.findings-acl.117",
pages = "1959--1981",
}
使用(Sentence-Transformers)
安装sentence-transformers后即可轻松使用:
pip install -U sentence-transformers
使用示例:
from sentence_transformers import SentenceTransformer
phrases = ["信息检索", "文本挖掘", "自然语言处理"]
model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1')
embeddings = model.encode(phrases)
print(embeddings)
使用(HuggingFace Transformers)
若不使用sentence-transformers,可通过以下方式:先将输入传入转换器模型,再对上下文词嵌入执行池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
phrases = ["信息检索", "文本挖掘", "自然语言处理"]
tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1')
model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1')
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("短语嵌入:")
print(sentence_embeddings)
训练数据
模型在覆盖多领域的四个关键短语数据集上训练:
训练参数:
数据加载器:
长度2025的torch.utils.data.dataloader.DataLoader
,参数:
{'batch_size': 512, 'sampler': '随机采样器', 'batch_sampler': '批采样器'}
损失函数:
sentence_transformers.losses.MultipleNegativesRankingLoss
,参数:
{'scale': 20.0, 'similarity_fct': '余弦相似度'}
训练方法参数:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "无",
"max_grad_norm": 1,
"optimizer_class": "AdamW优化器",
"optimizer_params": {"lr": 1e-06},
"scheduler": "线性预热",
"steps_per_epoch": null,
"warmup_steps": 203,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 12, 'do_lower_case': False}) 含MPNet模型
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)