C
Cai Lunaris Text Embeddings
由 consciousAI 开发
一个基于sentence-transformers的文本嵌入模型,专注于句子相似度计算和特征提取任务。
下载量 59
发布时间 : 6/22/2023
模型介绍
内容详情
替代品
模型简介
该模型主要用于生成文本嵌入向量,支持句子相似度计算和特征提取任务,适用于信息检索和相关应用场景。
模型特点
句子相似度计算
能够准确计算不同句子之间的语义相似度
特征提取
可将文本转换为高维特征向量,用于下游任务
多任务支持
支持检索、重排序和语义文本相似度等多种任务
模型能力
句子相似度计算
文本特征提取
信息检索
问答系统支持
文本重排序
使用案例
信息检索
问答系统
用于问答系统中检索相关问题
在CQADupstack数据集上表现出色
技术支持论坛
用于技术论坛中查找相似问题
在AskUbuntuDupQuestions数据集上map达到53.44
语义分析
生物医学文本分析
用于生物医学文本的语义相似度计算
在BIOSSES数据集上cos_sim_pearson达到75.97
license: apache-2.0 pipeline_tag: sentence-similarity tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb model-index:
- name: cai-lunaris-text-embeddings
results:
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 17.07
- type: map_at_10 value: 29.372999999999998
- type: map_at_100 value: 30.79
- type: map_at_1000 value: 30.819999999999997
- type: map_at_3 value: 24.395
- type: map_at_5 value: 27.137
- type: mrr_at_1 value: 17.923000000000002
- type: mrr_at_10 value: 29.695
- type: mrr_at_100 value: 31.098
- type: mrr_at_1000 value: 31.128
- type: mrr_at_3 value: 24.704
- type: mrr_at_5 value: 27.449
- type: ndcg_at_1 value: 17.07
- type: ndcg_at_10 value: 37.269000000000005
- type: ndcg_at_100 value: 43.716
- type: ndcg_at_1000 value: 44.531
- type: ndcg_at_3 value: 26.839000000000002
- type: ndcg_at_5 value: 31.845000000000002
- type: precision_at_1 value: 17.07
- type: precision_at_10 value: 6.3020000000000005
- type: precision_at_100 value: 0.922
- type: precision_at_1000 value: 0.099
- type: precision_at_3 value: 11.309
- type: precision_at_5 value: 9.246
- type: recall_at_1 value: 17.07
- type: recall_at_10 value: 63.016000000000005
- type: recall_at_100 value: 92.24799999999999
- type: recall_at_1000 value: 98.72
- type: recall_at_3 value: 33.926
- type: recall_at_5 value: 46.23
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map value: 53.44266265900711
- type: mrr value: 66.54695950402322
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson value: 75.9652953730204
- type: cos_sim_spearman value: 73.96554077670989
- type: euclidean_pearson value: 75.68477255792381
- type: euclidean_spearman value: 74.59447076995703
- type: manhattan_pearson value: 75.94984623881341
- type: manhattan_spearman value: 74.72218452337502
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 14.119000000000002
- type: map_at_10 value: 19.661
- type: map_at_100 value: 20.706
- type: map_at_1000 value: 20.848
- type: map_at_3 value: 17.759
- type: map_at_5 value: 18.645
- type: mrr_at_1 value: 17.166999999999998
- type: mrr_at_10 value: 23.313
- type: mrr_at_100 value: 24.263
- type: mrr_at_1000 value: 24.352999999999998
- type: mrr_at_3 value: 21.412
- type: mrr_at_5 value: 22.313
- type: ndcg_at_1 value: 17.166999999999998
- type: ndcg_at_10 value: 23.631
- type: ndcg_at_100 value: 28.427000000000003
- type: ndcg_at_1000 value: 31.862000000000002
- type: ndcg_at_3 value: 20.175
- type: ndcg_at_5 value: 21.397
- type: precision_at_1 value: 17.166999999999998
- type: precision_at_10 value: 4.549
- type: precision_at_100 value: 0.8370000000000001
- type: precision_at_1000 value: 0.136
- type: precision_at_3 value: 9.68
- type: precision_at_5 value: 6.981
- type: recall_at_1 value: 14.119000000000002
- type: recall_at_10 value: 32.147999999999996
- type: recall_at_100 value: 52.739999999999995
- type: recall_at_1000 value: 76.67
- type: recall_at_3 value: 22.019
- type: recall_at_5 value: 25.361
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 16.576
- type: map_at_10 value: 22.281000000000002
- type: map_at_100 value: 23.066
- type: map_at_1000 value: 23.166
- type: map_at_3 value: 20.385
- type: map_at_5 value: 21.557000000000002
- type: mrr_at_1 value: 20.892
- type: mrr_at_10 value: 26.605
- type: mrr_at_100 value: 27.229
- type: mrr_at_1000 value: 27.296
- type: mrr_at_3 value: 24.809
- type: mrr_at_5 value: 25.927
- type: ndcg_at_1 value: 20.892
- type: ndcg_at_10 value: 26.092
- type: ndcg_at_100 value: 29.398999999999997
- type: ndcg_at_1000 value: 31.884
- type: ndcg_at_3 value: 23.032
- type: ndcg_at_5 value: 24.634
- type: precision_at_1 value: 20.892
- type: precision_at_10 value: 4.885
- type: precision_at_100 value: 0.818
- type: precision_at_1000 value: 0.126
- type: precision_at_3 value: 10.977
- type: precision_at_5 value: 8.013
- type: recall_at_1 value: 16.576
- type: recall_at_10 value: 32.945
- type: recall_at_100 value: 47.337
- type: recall_at_1000 value: 64.592
- type: recall_at_3 value: 24.053
- type: recall_at_5 value: 28.465
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 20.604
- type: map_at_10 value: 28.754999999999995
- type: map_at_100 value: 29.767
- type: map_at_1000 value: 29.852
- type: map_at_3 value: 26.268
- type: map_at_5 value: 27.559
- type: mrr_at_1 value: 24.326
- type: mrr_at_10 value: 31.602000000000004
- type: mrr_at_100 value: 32.46
- type: mrr_at_1000 value: 32.521
- type: mrr_at_3 value: 29.415000000000003
- type: mrr_at_5 value: 30.581000000000003
- type: ndcg_at_1 value: 24.326
- type: ndcg_at_10 value: 33.335
- type: ndcg_at_100 value: 38.086
- type: ndcg_at_1000 value: 40.319
- type: ndcg_at_3 value: 28.796
- type: ndcg_at_5 value: 30.758999999999997
- type: precision_at_1 value: 24.326
- type: precision_at_10 value: 5.712
- type: precision_at_100 value: 0.893
- type: precision_at_1000 value: 0.11499999999999999
- type: precision_at_3 value: 13.208
- type: precision_at_5 value: 9.329
- type: recall_at_1 value: 20.604
- type: recall_at_10 value: 44.505
- type: recall_at_100 value: 65.866
- type: recall_at_1000 value: 82.61800000000001
- type: recall_at_3 value: 31.794
- type: recall_at_5 value: 36.831
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 8.280999999999999
- type: map_at_10 value: 11.636000000000001
- type: map_at_100 value: 12.363
- type: map_at_1000 value: 12.469
- type: map_at_3 value: 10.415000000000001
- type: map_at_5 value: 11.144
- type: mrr_at_1 value: 9.266
- type: mrr_at_10 value: 12.838
- type: mrr_at_100 value: 13.608999999999998
- type: mrr_at_1000 value: 13.700999999999999
- type: mrr_at_3 value: 11.507000000000001
- type: mrr_at_5 value: 12.343
- type: ndcg_at_1 value: 9.266
- type: ndcg_at_10 value: 13.877
- type: ndcg_at_100 value: 18.119
- type: ndcg_at_1000 value: 21.247
- type: ndcg_at_3 value: 11.376999999999999
- type: ndcg_at_5 value: 12.675
- type: precision_at_1 value: 9.266
- type: precision_at_10 value: 2.226
- type: precision_at_100 value: 0.47200000000000003
- type: precision_at_1000 value: 0.077
- type: precision_at_3 value: 4.859
- type: precision_at_5 value: 3.6380000000000003
- type: recall_at_1 value: 8.280999999999999
- type: recall_at_10 value: 19.872999999999998
- type: recall_at_100 value: 40.585
- type: recall_at_1000 value: 65.225
- type: recall_at_3 value: 13.014000000000001
- type: recall_at_5 value: 16.147
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 4.1209999999999996
- type: map_at_10 value: 7.272
- type: map_at_100 value: 8.079
- type: map_at_1000 value: 8.199
- type: map_at_3 value: 6.212
- type: map_at_5 value: 6.736000000000001
- type: mrr_at_1 value: 5.721
- type: mrr_at_10 value: 9.418
- type: mrr_at_100 value: 10.281
- type: mrr_at_1000 value: 10.385
- type: mrr_at_3 value: 8.126
- type: mrr_at_5 value: 8.779
- type: ndcg_at_1 value: 5.721
- type: ndcg_at_10 value: 9.673
- type: ndcg_at_100 value: 13.852999999999998
- type: ndcg_at_1000 value: 17.546999999999997
- type: ndcg_at_3 value: 7.509
- type: ndcg_at_5 value: 8.373
- type: precision_at_1 value: 5.721
- type: precision_at_10 value: 2.04
- type: precision_at_100 value: 0.48
- type: precision_at_1000 value: 0.093
- type: precision_at_3 value: 4.022
- type: precision_at_5 value: 3.06
- type: recall_at_1 value: 4.1209999999999996
- type: recall_at_10 value: 15.201
- type: recall_at_100 value: 33.922999999999995
- type: recall_at_1000 value: 61.529999999999994
- type: recall_at_3 value: 8.869
- type: recall_at_5 value: 11.257
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 14.09
- type: map_at_10 value: 19.573999999999998
- type: map_at_100 value: 20.580000000000002
- type: map_at_1000 value: 20.704
- type: map_at_3 value: 17.68
- type: map_at_5 value: 18.64
- type: mrr_at_1 value: 17.227999999999998
- type: mrr_at_10 value: 23.152
- type: mrr_at_100 value: 24.056
- type: mrr_at_1000 value: 24.141000000000002
- type: mrr_at_3 value: 21.142
- type: mrr_at_5 value: 22.201
- type: ndcg_at_1 value: 17.227999999999998
- type: ndcg_at_10 value: 23.39
- type: ndcg_at_100 value: 28.483999999999998
- type: ndcg_at_1000 value: 31.709
- type: ndcg_at_3 value: 19.883
- type: ndcg_at_5 value: 21.34
- type: precision_at_1 value: 17.227999999999998
- type: precision_at_10 value: 4.3790000000000004
- type: precision_at_100 value: 0.826
- type: precision_at_1000 value: 0.128
- type: precision_at_3 value: 9.496
- type: precision_at_5 value: 6.872
- type: recall_at_1 value: 14.09
- type: recall_at_10 value: 31.580000000000002
- type: recall_at_100 value: 54.074
- type: recall_at_1000 value: 77.092
- type: recall_at_3 value: 21.601
- type: recall_at_5 value: 25.333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 10.538
- type: map_at_10 value: 15.75
- type: map_at_100 value: 16.71
- type: map_at_1000 value: 16.838
- type: map_at_3 value: 13.488
- type: map_at_5 value: 14.712
- type: mrr_at_1 value: 13.813
- type: mrr_at_10 value: 19.08
- type: mrr_at_100 value: 19.946
- type: mrr_at_1000 value: 20.044
- type: mrr_at_3 value: 16.838
- type: mrr_at_5 value: 17.951
- type: ndcg_at_1 value: 13.813
- type: ndcg_at_10 value: 19.669
- type: ndcg_at_100 value: 24.488
- type: ndcg_at_1000 value: 27.87
- type: ndcg_at_3 value: 15.479000000000001
- type: ndcg_at_5 value: 17.229
- type: precision_at_1 value: 13.813
- type: precision_at_10 value: 3.916
- type: precision_at_100 value: 0.743
- type: precision_at_1000 value: 0.122
- type: precision_at_3 value: 7.534000000000001
- type: precision_at_5 value: 5.822
- type: recall_at_1 value: 10.538
- type: recall_at_10 value: 28.693
- type: recall_at_100 value: 50.308
- type: recall_at_1000 value: 74.44
- type: recall_at_3 value: 16.866999999999997
- type: recall_at_5 value: 21.404999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 11.044583333333332
- type: map_at_10 value: 15.682833333333335
- type: map_at_100 value: 16.506500000000003
- type: map_at_1000 value: 16.623833333333334
- type: map_at_3 value: 14.130833333333333
- type: map_at_5 value: 14.963583333333332
- type: mrr_at_1 value: 13.482833333333332
- type: mrr_at_10 value: 18.328500000000002
- type: mrr_at_100 value: 19.095416666666665
- type: mrr_at_1000 value: 19.18241666666666
- type: mrr_at_3 value: 16.754749999999998
- type: mrr_at_5 value: 17.614749999999997
- type: ndcg_at_1 value: 13.482833333333332
- type: ndcg_at_10 value: 18.81491666666667
- type: ndcg_at_100 value: 22.946833333333334
- type: ndcg_at_1000 value: 26.061083333333336
- type: ndcg_at_3 value: 15.949333333333332
- type: ndcg_at_5 value: 17.218333333333334
- type: precision_at_1 value: 13.482833333333332
- type: precision_at_10 value: 3.456583333333333
- type: precision_at_100 value: 0.6599166666666666
- type: precision_at_1000 value: 0.109
- type: precision_at_3 value: 7.498833333333332
- type: precision_at_5 value: 5.477166666666667
- type: recall_at_1 value: 11.044583333333332
- type: recall_at_10 value: 25.737750000000005
- type: recall_at_100 value: 44.617916666666666
- type: recall_at_1000 value: 67.56524999999999
- type: recall_at_3 value: 17.598249999999997
- type: recall_at_5 value: 20.9035
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 9.362
- type: map_at_10 value: 13.414000000000001
- type: map_at_100 value: 14.083000000000002
- type: map_at_1000 value: 14.168
- type: map_at_3 value: 12.098
- type: map_at_5 value: 12.803999999999998
- type: mrr_at_1 value: 11.043
- type: mrr_at_10 value: 15.158
- type: mrr_at_100 value: 15.845999999999998
- type: mrr_at_1000 value: 15.916
- type: mrr_at_3 value: 13.88
- type: mrr_at_5 value: 14.601
- type: ndcg_at_1 value: 11.043
- type: ndcg_at_10 value: 16.034000000000002
- type: ndcg_at_100 value: 19.686
- type: ndcg_at_1000 value: 22.188
- type: ndcg_at_3 value: 13.530000000000001
- type: ndcg_at_5 value: 14.704
- type: precision_at_1 value: 11.043
- type: precision_at_10 value: 2.791
- type: precision_at_100 value: 0.5
- type: precision_at_1000 value: 0.077
- type: precision_at_3 value: 6.237
- type: precision_at_5 value: 4.5089999999999995
- type: recall_at_1 value: 9.362
- type: recall_at_10 value: 22.396
- type: recall_at_100 value: 39.528999999999996
- type: recall_at_1000 value: 58.809
- type: recall_at_3 value: 15.553
- type: recall_at_5 value: 18.512
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 5.657
- type: map_at_10 value: 8.273
- type: map_at_100 value: 8.875
- type: map_at_1000 value: 8.977
- type: map_at_3 value: 7.32
- type: map_at_5 value: 7.792000000000001
- type: mrr_at_1 value: 7.02
- type: mrr_at_10 value: 9.966999999999999
- type: mrr_at_100 value: 10.636
- type: mrr_at_1000 value: 10.724
- type: mrr_at_3 value: 8.872
- type: mrr_at_5 value: 9.461
- type: ndcg_at_1 value: 7.02
- type: ndcg_at_10 value: 10.199
- type: ndcg_at_100 value: 13.642000000000001
- type: ndcg_at_1000 value: 16.643
- type: ndcg_at_3 value: 8.333
- type: ndcg_at_5 value: 9.103
- type: precision_at_1 value: 7.02
- type: precision_at_10 value: 1.8929999999999998
- type: precision_at_100 value: 0.43
- type: precision_at_1000 value: 0.08099999999999999
- type: precision_at_3 value: 3.843
- type: precision_at_5 value: 2.884
- type: recall_at_1 value: 5.657
- type: recall_at_10 value: 14.563
- type: recall_at_100 value: 30.807000000000002
- type: recall_at_1000 value: 53.251000000000005
- type: recall_at_3 value: 9.272
- type: recall_at_5 value: 11.202
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 10.671999999999999
- type: map_at_10 value: 14.651
- type: map_at_100 value: 15.406
- type: map_at_1000 value: 15.525
- type: map_at_3 value: 13.461
- type: map_at_5 value: 14.163
- type: mrr_at_1 value: 12.407
- type: mrr_at_10 value: 16.782
- type: mrr_at_100 value: 17.562
- type: mrr_at_1000 value: 17.653
- type: mrr_at_3 value: 15.47
- type: mrr_at_5 value: 16.262
- type: ndcg_at_1 value: 12.407
- type: ndcg_at_10 value: 17.251
- type: ndcg_at_100 value: 21.378
- type: ndcg_at_1000 value: 24.689
- type: ndcg_at_3 value: 14.915000000000001
- type: ndcg_at_5 value: 16.1
- type: precision_at_1 value: 12.407
- type: precision_at_10 value: 2.91
- type: precision_at_100 value: 0.573
- type: precision_at_1000 value: 0.096
- type: precision_at_3 value: 6.779
- type: precision_at_5 value: 4.888
- type: recall_at_1 value: 10.671999999999999
- type: recall_at_10 value: 23.099
- type: recall_at_100 value: 41.937999999999995
- type: recall_at_1000 value: 66.495
- type: recall_at_3 value: 16.901
- type: recall_at_5 value: 19.807
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 13.364
- type: map_at_10 value: 17.772
- type: map_at_100 value: 18.659
- type: map_at_1000 value: 18.861
- type: map_at_3 value: 16.659
- type: map_at_5 value: 17.174
- type: mrr_at_1 value: 16.996
- type: mrr_at_10 value: 21.687
- type: mrr_at_100 value: 22.313
- type: mrr_at_1000 value: 22.422
- type: mrr_at_3 value: 20.652
- type: mrr_at_5 value: 21.146
- type: ndcg_at_1 value: 16.996
- type: ndcg_at_10 value: 21.067
- type: ndcg_at_100 value: 24.829
- type: ndcg_at_1000 value: 28.866999999999997
- type:
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers

支持多种语言
J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入
英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers

英语
O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入
英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入
英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers

其他
B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors
英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文