pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
- 否定
license: cc-by-sa-4.0
language:
- 英文
datasets:
- tum-nlp/cannot-dataset
NegMPNet
这是all-mpnet-base-v2的否定感知版本。它是一个sentence-transformers模型:能够将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
更多信息,请参阅我们的论文This is not correct! Negation-aware Evaluation of Language Generation Systems。
使用方法(Sentence-Transformers)
安装sentence-transformers后,可以轻松使用此模型:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer("tum-nlp/NegMPNet")
embeddings = model.encode(sentences)
print(embeddings)
否定感知
与基础模型相比,此模型对否定更敏感。您可以自行尝试:
from sentence_transformers import SentenceTransformer, util
import torch
base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
finetuned_model = SentenceTransformer("tum-nlp/NegMPNet")
def cos_similarities(references: list, candidates: list, model: SentenceTransformer, batch_size=8) -> torch.Tensor:
assert len(references) == len(candidates), "参考和候选的数量必须相等"
emb_ref = model.encode(references, batch_size=batch_size)
emb_cand = model.encode(candidates, batch_size=batch_size)
return torch.diag(util.cos_sim(emb_ref, emb_cand))
references = ["Ray Charles是传奇人物。", "Ray Charles是传奇人物"]
candidates = ["Ray Charles是个传奇。", "Ray Charles不是传奇人物。"]
print(cos_similarities(references, candidates, base_model))
print(cos_similarities(references, candidates, finetuned_model))
使用方法(HuggingFace Transformers)
如果不使用sentence-transformers,可以这样使用模型:首先将输入传递给transformer模型,然后对上下文化的词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['这是一个示例句子', '每个句子都会被转换']
tokenizer = AutoTokenizer.from_pretrained("tum-nlp/NegMPNet")
model = AutoModel.from_pretrained("tum-nlp/NegMPNet")
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)