pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
datasets:
- 代码搜索网络
flax-sentence-embeddings/st-codesearch-distilroberta-base
这是一个sentence-transformers模型:它将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
该模型在code_search_net数据集上进行训练,可用于根据文本搜索程序代码。
使用方法:
from sentence_transformers import SentenceTransformer, util
code = ["""def sort_list(x):
return sorted(x)""",
"""def count_above_threshold(elements, threshold=0):
counter = 0
for e in elements:
if e > threshold:
counter += 1
return counter""",
"""def find_min_max(elements):
min_ele = 99999
max_ele = -99999
for e in elements:
if e < min_ele:
min_ele = e
if e > max_ele:
max_ele = e
return min_ele, max_ele"""]
model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base")
code_emb = model.encode(code, convert_to_tensor=True)
while True:
query = input("查询:")
query_emb = model.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_emb, code_emb)[0]
top_hit = hits[0]
print("余弦相似度:{:.2f}".format(top_hit['score']))
print(code[top_hit['corpus_id']])
print("\n\n")
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型变得非常简单:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base')
embeddings = model.encode(sentences)
print(embeddings)
训练过程
该模型使用DistilRoBERTa-base模型在代码搜索数据集上训练了10k步,批次大小为256,采用MultipleNegativesRankingLoss损失函数。
这是一个初步模型,未经充分测试,训练过程也较为简单。
训练参数如下:
数据加载器:
MultiDatasetDataLoader.MultiDatasetDataLoader
,长度5371,参数:
{'batch_size': 256}
损失函数:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数:
{'scale': 20, 'similarity_fct': 'dot_score'}
fit()方法参数:
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "warmupconstant",
"steps_per_epoch": 10000,
"warmup_steps": 500,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
引用与作者