pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
- 机器翻译评估
- 指标
- 评估
{AnanyaCoder/XLsim_en-de}
XLSim:基于孪生架构的机器翻译评估指标
XLSim是一种基于参考的监督式评估指标,其回归目标为WMT(2017-2022)提供的人工评分。该模型使用跨语言模型XLM-RoBERTa-base[ https://huggingface.co/xlm-roberta-base ],通过孪生网络架构和余弦相似度损失进行训练。
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用本模型:
pip install -U sentence-transformers
随后可按以下方式调用模型:
from sentence_transformers import SentenceTransformer, losses, models, util
metric_model = SentenceTransformer('{MODEL_NAME}')
mt_samples = ['这是机器翻译句子1', '这是机器翻译句子2']
ref_samples = ['这是参考句子1', '这是参考句子2']
mtembeddings = metric_model.encode(mt_samples, convert_to_tensor=True)
refembeddings = metric_model.encode(ref_samples, convert_to_tensor=True)
cosine_scores_refmt = util.cos_sim(mtembeddings, refembeddings)
metric_model_scores = []
for i in range(len(mt_samples)):
metric_model_scores.append(cosine_scores_refmt[i][i].tolist())
scores = metric_model_scores
评估结果
本模型的自动化评估结果详见:WMT23指标共享任务发现
训练过程
模型训练参数如下:
数据加载器:
使用torch.utils.data.dataloader.DataLoader
,长度6625,参数:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
训练方法fit()的参数:
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2650,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
MEE4与XLsim:IIIT海德拉巴为WMT23指标共享任务提交的方案 (Mukherjee & Shrivastava, WMT 2023)