pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
license: mit
datasets:
- stsb_multi_mt
language:
- 意大利语
library_name: sentence-transformers
sentence-bert-base-italian-xxl-cased
这是一个sentence-transformers模型:它将句子和段落映射到一个768维的密集向量空间,可用于聚类或语义搜索等任务。该模型基于dbmdz/bert-base-italian-xxl-uncased,更多信息请查看其模型卡片。
使用方法(Sentence-Transformers)
安装sentence-transformers后,使用此模型非常简单:
pip install -U sentence-transformers
然后可以按如下方式使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["一个女孩正在整理头发。", "一个女孩正在梳头发。"]
model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-uncased')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(FastEmbed)
安装FastEmbed后,使用此模型非常简单:
pip install fastembed
然后可以按如下方式使用模型:
from fastembed import TextEmbedding
from fastembed.common.model_description import PoolingType, ModelSource
sentences = ["一个女孩正在整理头发。", "一个女孩正在梳头发。"]
TextEmbedding.add_custom_model(
model="nickprock/sentence-bert-base-italian-xxl-uncased",
pooling=PoolingType.MEAN,
normalization=True,
sources=ModelSource(hf="nickprock/sentence-bert-base-italian-xxl-uncased"),
dim=768,
model_file="onnx/model_qint8_avx512_vnni.onnx",
)
model = TextEmbedding(model_name="nickprock/sentence-bert-base-italian-xxl-uncased")
embeddings = list(model.embed(sentences))
print(embeddings)
使用方法(HuggingFace Transformers)
如果没有安装sentence-transformers,可以按如下方式使用模型:首先将输入传递给转换器模型,然后需要在上下文化的词嵌入之上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['一个女孩正在整理头发。', '一个女孩正在梳头发。']
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)