标签:
- 深度强化学习
- 强化学习
- stable-baselines3
- 雅达利游戏
模型索引:
- 名称: PPO智能体
结果:
- 任务:
类型: 强化学习 # 必填项。例如: 自动语音识别
数据集:
类型: PongNoFrameskip-v4 # 必填项。例如: common_voice。使用来自https://hf.co/datasets的数据集ID
名称: PongNoFrameskip-v4 # 必填项。例如: Common Voice zh-CN
指标:
- 类型: 平均奖励 # 必填项。例如: 词错误率
值: 21 # 必填项。例如: 20.90
使用PPO智能体玩PongNoFrameskip-v4
这是一个经过训练的PPO智能体模型,使用stable-baselines3库玩PongNoFrameskip-v4(我们的智能体是🟢绿色的一方)。
训练报告: https://wandb.ai/simoninithomas/HFxSB3/reports/Atari-HFxSB3-Benchmark--VmlldzoxNjI3NTIy
评估结果
平均奖励: 21.00 +/- 0.0
使用方法(配合Stable-baselines3)
- 需要使用
gym==0.19
版本,因为该版本包含雅达利游戏ROM。
- 动作空间为6,因为我们仅使用该游戏中可能的动作。
观看智能体互动:
import os
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecNormalize
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
from huggingface_sb3 import load_from_hub, push_to_hub
checkpoint = load_from_hub("ThomasSimonini/ppo-PongNoFrameskip-v4", "ppo-PongNoFrameskip-v4.zip")
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
model= PPO.load(checkpoint, custom_objects=custom_objects)
env = make_atari_env('PongNoFrameskip-v4', n_envs=1)
env = VecFrameStack(env, n_stack=4)
obs = env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
训练代码
import wandb
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder
from stable_baselines3.common.callbacks import CheckpointCallback
from wandb.integration.sb3 import WandbCallback
from huggingface_sb3 import load_from_hub, push_to_hub
config = {
"env_name": "PongNoFrameskip-v4",
"num_envs": 8,
"total_timesteps": int(10e6),
"seed": 4089164106,
}
run = wandb.init(
project="HFxSB3",
config = config,
sync_tensorboard = True,
monitor_gym = True,
save_code = True,
)
env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"])
print("环境动作空间: ", env.action_space.n)
env = VecFrameStack(env, n_stack=4)
env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000)
model = PPO(policy = "CnnPolicy",
env = env,
batch_size = 256,
clip_range = 0.1,
ent_coef = 0.01,
gae_lambda = 0.9,
gamma = 0.99,
learning_rate = 2.5e-4,
max_grad_norm = 0.5,
n_epochs = 4,
n_steps = 128,
vf_coef = 0.5,
tensorboard_log = f"runs",
verbose=1,
)
model.learn(
total_timesteps = config["total_timesteps"],
callback = [
WandbCallback(
gradient_save_freq = 1000,
model_save_path = f"models/{run.id}",
),
CheckpointCallback(save_freq=10000, save_path='./pong',
name_prefix=config["env_name"]),
]
)
model.save("ppo-PongNoFrameskip-v4.zip")
push_to_hub(repo_id="ThomasSimonini/ppo-PongNoFrameskip-v4",
filename="ppo-PongNoFrameskip-v4.zip",
commit_message="添加训练好的Pong智能体")