🚀 nlpconnect/vit - gpt2 - 图像描述生成
这是一个图像描述生成模型,由@ydshieh在[flax](https://github.com/huggingface/transformers/tree/main/examples/flax/image - captioning)中训练得到,此为[该模型](https://huggingface.co/ydshieh/vit - gpt2 - coco - en - ckpts)的PyTorch版本。该模型可将图像转换为文本描述,为图像赋予语义信息,在图像理解和信息提取等方面具有重要价值。
🚀 快速开始
模型信息
属性 |
详情 |
标签 |
图像转文本、图像描述生成 |
许可证 |
Apache - 2.0 |
重复来源 |
nlpconnect/vit - gpt2 - 图像描述生成 |
示例展示
- 稀树草原
- [足球比赛](https://huggingface.co/datasets/mishig/sample_images/resolve/main/football - match.jpg)
- 机场
相关文章
[使用Transformer进行图像描述生成的图解](https://ankur3107.github.io/blogs/the - illustrated - image - captioning - using - transformers/)

💻 使用示例
基础用法
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
predict_step(['doctor.e16ba4e4.jpg'])
高级用法
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
📄 许可证
本项目采用Apache - 2.0许可证。
📞 联系信息
若需要任何帮助,可通过以下方式联系: