标签:
- 图像转文本
- 图像描述生成
语言:
- 俄语
评估指标:
- 双语评估替补分数(BLEU)
库名称: transformers
首个俄语图像描述生成模型 vit-rugpt2-image-captioning
这是一个基于COCO2014数据集翻译版(英俄)训练的图片描述生成模型。
模型详情
模型编码器部分采用google/vit-base-patch16-224-in21k
初始化,解码器部分采用sberbank-ai/rugpt3large_based_on_gpt2
初始化。
测试数据指标
- BLEU分数: 8.672
- BLEU-1精确率: 30.567
- BLEU-2精确率: 7.895
- BLEU-3精确率: 3.261
示例运行代码
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("vit-rugpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("vit-rugpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("vit-rugpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_caption(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
predict_caption(['train2014/COCO_train2014_000000295442.jpg'])
使用transformers流水线的示例代码
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="vit-rugpt2-image-captioning")
image_to_text("train2014/COCO_train2014_000000296754.jpg")
获取帮助联系方式
- https://huggingface.co/tuman
- https://github.com/tumanov-a
- https://t.me/tumanov_av