language: de
license: mit
roberta-base-wechsel-german
使用WECHSEL训练的模型:通过子词嵌入的有效初始化实现单语语言模型的跨语言迁移。
代码请见:https://github.com/CPJKU/wechsel
论文请见:https://aclanthology.org/2022.naacl-main.293/
性能表现
RoBERTa
模型 |
NLI得分 |
NER得分 |
平均得分 |
roberta-base-wechsel-french |
82.43 |
90.88 |
86.65 |
camembert-base |
80.88 |
90.26 |
85.57 |
模型 |
NLI得分 |
NER得分 |
平均得分 |
roberta-base-wechsel-german |
81.79 |
89.72 |
85.76 |
deepset/gbert-base |
78.64 |
89.46 |
84.05 |
模型 |
NLI得分 |
NER得分 |
平均得分 |
roberta-base-wechsel-chinese |
78.32 |
80.55 |
79.44 |
bert-base-chinese |
76.55 |
82.05 |
79.30 |
模型 |
NLI得分 |
NER得分 |
平均得分 |
roberta-base-wechsel-swahili |
75.05 |
87.39 |
81.22 |
xlm-roberta-base |
69.18 |
87.37 |
78.28 |
GPT2
模型 |
PPL |
gpt2-wechsel-french |
19.71 |
gpt2 (从头训练) |
20.47 |
模型 |
PPL |
gpt2-wechsel-german |
26.8 |
gpt2 (从头训练) |
27.63 |
模型 |
PPL |
gpt2-wechsel-chinese |
51.97 |
gpt2 (从头训练) |
52.98 |
模型 |
PPL |
gpt2-wechsel-swahili |
10.14 |
gpt2 (从头训练) |
10.58 |
详情请参阅我们的论文。
引用
请按以下方式引用WECHSEL:
@inproceedings{minixhofer-etal-2022-wechsel,
title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models",
author = "Minixhofer, Benjamin and
Paischer, Fabian and
Rekabsaz, Navid",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.293",
pages = "3992--4006",
abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.",
}