🚀 Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_giant_ostrich
本模型是基于Transformer架构的微调模型,在问答和文本生成任务上表现出色,为用户提供更精准、高效的语言交互体验。
🚀 快速开始
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_giant_ostrich", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
✨ 主要特性
📦 安装指南
文档未提供安装步骤,暂不展示。
💻 使用示例
基础用法
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_giant_ostrich", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
高级用法
文档未提供高级用法代码示例,暂不展示。
📚 详细文档
训练过程
本模型使用GRPO方法进行训练,该方法在论文DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models中被提出。
框架版本
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
引用信息
引用GRPO方法时,请使用以下格式:
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
引用TRL框架时,请使用以下格式:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
📄 许可证
本模型遵循指定的许可证。具体许可证信息请参考 license
文件。