许可证:gemma
语言:
- 土耳其语
任务标签:文本生成
基础模型:google/gemma2-9b
标签:
- 土耳其语
- gemma2
- DPO
- SFT
- 对话式
- 指令
Turkish-Gemma-9b-v0.1
这是Turkish-Gemma-9b-v0.1模型。该模型基于Gemma-2-9b,通过持续预训练、监督微调(SFT)、直接偏好优化(DPO)和模型合并开发而成。
Turkish-Gemma-9b-v0.1专为土耳其语文本生成任务设计,能够生成连贯且上下文相关的续写和回答。由于训练数据的多样性(包括大规模预训练语料、指令调优数据和人类偏好数据),模型可能表现出某些偏见。用户应意识到这些偏见并负责任地部署模型。
您可以在此轻松体验模型演示(即将上线!):https://cosmos.yildiz.edu.tr/cosmosllm
为了评估模型性能,我们编制了一个包含1,450个精心设计问题的数据集,涵盖多个类别。每个问题由18名人类标注者审核和评分,从而实现了多个模型之间的可靠比较。
下表总结了评估结果:
🏆 模型比较:胜率
模型名称 |
胜率 |
Qwen/Qwen3-30B-A3B |
62.39% |
gpt-4o-mini |
62.12% |
google/gemma-3-12b-it |
61.61% |
google/gemma-2-27b-it |
57.91% |
ytu-ce-cosmos/Turkish-Gemma-9b-v0.1 |
57.30% |
google/gemma-2-9b-it |
54.13% |
ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 |
36.89% |
投票方法
向人类评委展示一个问题以及来自不同模型的两个答案。评委根据偏好选择更好的答案。例如,在以下问题中,评委选择了右侧的答案:

📊 土耳其语评估基准结果(通过malhajar17/lm-evaluation-harness_turkish
)
模型名称 |
平均分 |
MMLU |
Truthful_QA |
ARC |
Hellaswag |
Gsm8K |
Winogrande |
Qwen/Qwen2.5-72B-Instruct |
67.69 |
77.28 |
59.86 |
61.52 |
61.98 |
83.6 |
61.92 |
google/gemma-3-27b-it |
67.36 |
70.2 |
57.06 |
66.98 |
66.58 |
77.52 |
65.8 |
google/gemma-2-27b-it |
65.57 |
66.49 |
57.45 |
63.65 |
63.86 |
76.54 |
65.4 |
meta-llama/Llama-3-1-70B-Instruct |
63.92 |
74.00 |
51.41 |
59.64 |
64.31 |
66.13 |
66.90 |
Qwen/Qwen2.5-32B-Instruct |
63.74 |
70.93 |
57.87 |
57.00 |
57.04 |
77.83 |
61.77 |
ytu-ce-cosmos/Turkish-Gemma-9b-v0.1 |
63.31 |
63.85 |
54.21 |
59.64 |
64.19 |
73.42 |
64.53 |
google/gemma-3-12b-it |
62.94 |
63.92 |
57.16 |
60.67 |
62.00 |
72.06 |
61.77 |
Qwen/Qwen2.5-14B-it |
60.34 |
65.28 |
59.00 |
50.00 |
52.22 |
76.77 |
58.77 |
google/gemma-2-9b-it |
59.14 |
61.07 |
55.77 |
56.31 |
56.48 |
63.10 |
62.09 |
ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 |
55.03 |
51.97 |
57.56 |
51.02 |
52.96 |
59.87 |
57.77 |
Qwen/Qwen2.5-7B-Instruct |
53.42 |
56.31 |
55.99 |
42.06 |
44.71 |
64.16 |
59.66 |
Transformers流水线
import transformers
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
]
outputs = pipeline(
messages,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
Transformers AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=False,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
致谢
- 感谢Hugging Face团队的慷慨支持,可以从他们的S3存储下载模型 🤗
- 本工作中使用的计算资源由土耳其国家高性能计算中心(UHeM)提供,资助编号为1016912023和1018512024
联系方式
COSMOS AI研究小组,伊斯坦布尔技术大学计算机工程系
https://cosmos.yildiz.edu.tr/
cosmos@yildiz.edu.tr
许可证:gemma2