library_name: transformers
tags:
- falcon-h1
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
base_model: tiiuae/Falcon-H1-34B-Instruct
inference: true
目录
- 摘要
- 模型详情
- 训练详情
- 使用方法
- 评估
- 引用
摘要
模型详情
模型描述
- 开发机构: https://www.tii.ae
- 模型类型: 因果解码器专用
- 架构: 混合Transformers + Mamba架构
- 支持语言: 英语、多语种
- 许可协议: Falcon-LLM许可证
训练详情
有关本模型训练协议的更多细节,请参阅Falcon-H1技术博客。
使用方法
当前可使用Hugging Face的transformers
、vLLM
或我们定制的llama.cpp
分支库来调用该模型。
推理
请确保安装最新版transformers
或vllm
,建议从源码安装:
pip install git+https://github.com/huggingface/transformers.git
vLLM官方文档提供了从源码构建的详细指南。
🤗 transformers
使用以下代码片段通过🤗 transformers运行H1模型:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiiuae/Falcon-H1-1B-Base"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
vLLM
对于vLLM,执行以下命令启动服务:
# pip install vllm
vllm serve tiiuae/Falcon-H1-1B-Instruct --tensor-parallel-size 2 --data-parallel-size 1
llama.cpp
我们正在将架构集成至llama.cpp
主库,当前可使用定制分支:https://github.com/tiiuae/llama.cpp-Falcon-H1
安装方法与原生llama.cpp
相同。
评估
Falcon-H1系列在各类任务(包括推理任务)中表现卓越。
任务类别 |
Falcon-H1-34B |
Qwen3-32B |
Qwen2.5-72B |
Qwen2.5-32B |
Gemma3-27B |
Llama3.3-70B |
Llama4-scout |
通用能力 |
|
|
|
|
|
|
|
BBH |
70.68 |
62.47 |
72.52 |
68.72 |
67.28 |
69.15 |
64.9 |
ARC-C |
61.01 |
48.98 |
46.59 |
44.54 |
54.52 |
63.65 |
56.14 |
TruthfulQA |
65.27 |
58.58 |
69.8 |
70.28 |
64.26 |
66.15 |
62.74 |
HellaSwag |
81.94 |
68.89 |
68.79 |
73.95 |
57.25 |
70.24 |
65.03 |
MMLU |
84.05 |
80.89 |
84.42 |
82.8 |
78.01 |
82.08 |
80.4 |
数学能力 |
|
|
|
|
|
|
|
GSM8k |
83.62 |
88.78 |
82.26 |
78.47 |
90.37 |
93.71 |
90.37 |
MATH-500 |
83.8 |
82.0 |
83.6 |
82.2 |
90.0 |
70.6 |
83.2 |
AMC-23 |
69.38 |
67.34 |
67.34 |
68.75 |
77.81 |
39.38 |
69.06 |
AIME-24 |
23.75 |
27.71 |
17.29 |
17.92 |
27.5 |
12.92 |
27.92 |
AIME-25 |
16.67 |
19.79 |
15.21 |
11.46 |
22.71 |
1.25 |
8.96 |
科学能力 |
|
|
|
|
|
|
|
GPQA |
41.53 |
30.2 |
37.67 |
34.31 |
36.49 |
31.99 |
31.8 |
GPQA_Diamond |
49.66 |
49.49 |
44.95 |
40.74 |
47.47 |
42.09 |
51.18 |
MMLU-Pro |
58.73 |
54.68 |
56.35 |
56.63 |
47.81 |
53.29 |
55.58 |
MMLU-stem |
83.57 |
81.64 |
82.59 |
82.37 |
73.55 |
74.88 |
75.2 |
编程能力 |
|
|
|
|
|
|
|
HumanEval |
87.2 |
90.85 |
87.2 |
90.24 |
86.59 |
83.53 |
85.4 |
HumanEval+ |
81.71 |
85.37 |
80.49 |
82.32 |
78.05 |
79.87 |
78.7 |
MBPP |
83.86 |
86.24 |
89.68 |
87.83 |
88.36 |
88.09 |
81.5 |
MBPP+ |
71.43 |
71.96 |
75.4 |
74.07 |
74.07 |
73.81 |
64.8 |
LiveCodeBench |
49.71 |
45.01 |
54.6 |
49.12 |
39.53 |
40.31 |
40.12 |
CRUXEval |
73.07 |
78.45 |
75.63 |
73.5 |
74.82 |
69.53 |
68.32 |
指令遵循 |
|
|
|
|
|
|
|
IFEval |
89.37 |
86.97 |
86.35 |
81.79 |
83.19 |
89.94 |
86.32 |
Alpaca-Eval |
48.32 |
64.21 |
49.29 |
39.26 |
56.16 |
38.27 |
36.26 |
MTBench |
9.2 |
9.05 |
9.16 |
9.09 |
8.75 |
8.98 |
8.98 |
LiveBench |
46.26 |
63.05 |
54.03 |
52.92 |
55.41 |
53.11 |
54.21 |
更多详细基准测试请参阅发布博客。
实用链接
引用
若Falcon-H1系列模型对您的研究有所帮助,请引用我们:
@misc{tiifalconh1,
title = {Falcon-H1:重新定义效率与性能的混合头语言模型家族},
url = {https://falcon-lm.github.io/blog/falcon-h1},
author = {Falcon-LLM团队},
month = {5月},
year = {2025}
}