库名称: transformers
基础模型:
- nbeerbower/llama-3-wissenschaft-8B
数据集:
- jondurbin/truthy-dpo-v0.1
- kyujinpy/orca_math_dpo
许可证类型: other
许可证名称: llama3

llama-3-bophades-v3-8B
本模型基于Llama-3-8b构建,受META LLAMA 3社区许可协议约束。
nbeerbower/llama-3-wissenschaft-8B在jondurbin/truthy-dpo-v0.1和kyujinpy/orca_math_dpo数据集上进行了微调。
实现方法
使用Google Colab的A100显卡进行微调。
参考教程:使用直接偏好优化微调Mistral-7b模型 - 作者Maxime Labonne
配置参数
数据集预处理与消息格式化:
def chatml_format(example):
system = ""
if example.get('system'):
system = "<|im_start|>system\n" + example['system'] + "<|im_end|>\n"
instruction = ""
if example.get('prompt'):
instruction = example['prompt']
if example.get('question'):
instruction = example['question']
prompt = "<|im_start|>user\n" + instruction + "<|im_end|>\n<|im_start|>assistant\n"
chosen = example['chosen'] + "<|im_end|>\n"
rejected = example['rejected'] + "<|im_end|>\n"
return {
"prompt": system + prompt,
"chosen": chosen,
"rejected": rejected,
}
ds = [
"jondurbin/truthy-dpo-v0.1",
"kyujinpy/orca_math_dpo"
]
loaded_datasets = [load_dataset(dataset_name, split='train') for dataset_name in ds]
dataset = concatenate_datasets(loaded_datasets)
original_columns = dataset.column_names
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
dataset = dataset.map(
chatml_format,
remove_columns=original_columns
)
LoRA配置、模型及训练参数:
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=1000,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=2048,
max_length=4096,
force_use_ref_model=True
)
dpo_trainer.train()