base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit
tags:
- transformers
- unsloth
- llama
- trl
- tts
- tex-to-speech
license: apache-2.0
language:
- pl
datasets:
- czyzi0/the-mc-speech-dataset
pipeline_tag: text-to-speech
VoxPolska:新一代波兰语语音生成
📌 模型亮点
- 语境感知语音:生成能捕捉波兰语细微差别和语调的语音。
- 展现语音合成和波兰语处理的高级能力。
- 将波兰语书面文本转换为自然、流畅且富有表现力的语音。
- 先进深度学习:采用尖端深度学习技术实现最佳性能。
- 前沿技术:展示语音合成和波兰语处理的高级能力。
⚙️ 技术细节
- 基础模型:Orpheus TTS
- 应用LoRA(低秩适配)微调以优化模型性能。
- 采样率:24 kHz音频输出,实现高保真音质。
- 训练数据:24000+波兰语文本-音频对
- 合并16位量化
- 音频解码:定制分层处理以生成音频
- 重复惩罚:1.1,避免重复短语
- 梯度检查点:启用以高效利用内存
🎧 使用示例
!pip install snac torch transformers
import torch
import snac
from snac import SNAC
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from IPython.display import display, Audio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("salihfurkaan/VoxPolska-V1-Merged-16bit")
model = AutoModelForCausalLM.from_pretrained("salihfurkaan/VoxPolska-V1-Merged-16bit").to(device)
os.environ["HF_TOKEN"] = "在此输入您的huggingface令牌"
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
prompts = [
"Cześć, jestem dużym modelem języka sztucznej inteligencji"
]
chosen_voice = None
prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]
all_input_ids = []
for prompt in prompts_:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
all_input_ids.append(input_ids)
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
all_modified_input_ids = []
for input_ids in all_input_ids:
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
all_modified_input_ids.append(modified_input_ids)
all_padded_tensors = []
all_attention_masks = []
max_length = max([x.shape[1] for x in all_modified_input_ids])
for modified_input_ids in all_modified_input_ids:
padding = max_length - modified_input_ids.shape[1]
padded_tensor = torch.cat([torch.full((1, padding), 128263, dtype=torch.int64), modified_input_ids], dim=1)
attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64), torch.ones((1, modified_input_ids.shape[1]), dtype=torch.int64)], dim=1)
all_padded_tensors.append(padded_tensor)
all_attention_masks.append(attention_mask)
all_padded_tensors = torch.cat(all_padded_tensors, dim=0).to(device)
all_attention_masks = torch.cat(all_attention_masks, dim=0).to(device)
generated_ids = model.generate(
input_ids=all_padded_tensors,
attention_mask=all_attention_masks,
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.95,
repetition_penalty=1.1,
num_return_sequences=1,
eos_token_id=128258,
use_cache=True
)
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
def redistribute_codes(code_list):
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list) + 1) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1).unsqueeze(0).to(device),
torch.tensor(layer_2).unsqueeze(0).to(device),
torch.tensor(layer_3).unsqueeze(0).to(device)
]
audio_hat = snac_model.decode(codes)
return audio_hat
my_samples = []
for code_list in code_lists:
samples = redistribute_codes(code_list)
my_samples.append(samples)
if len(prompts) != len(my_samples):
raise Exception("提示数量与样本数量不匹配")
else:
for i in range(len(my_samples)):
print(prompts[i])
samples = my_samples[i]
display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
del my_samples, samples
您可以从此处获取您的huggingface令牌
📬 联系与支持
如有问题、建议和反馈,请在HuggingFace上提交问题。您也可以通过以下方式联系作者:
LinkedIn
模型滥用
请勿在未经同意的情况下使用此模型进行冒充、传播错误信息或欺骗(包括假新闻或欺诈性电话),或任何非法或有害活动。使用此模型即表示您同意遵守所有适用的法律和道德准则。
引用
@misc{
title={salihfurkaan/VoxPolska-V1-Merged-16bit},
author={Salih Furkan Erik},
year={2025},
url={https://huggingface.co/salihfurkaan/VoxPolska-V1-Merged-16bit/}
}